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We propose noncommutative space-time and a method to construct noncommutative
field theory in terms of a covariant?-product Moyal algebra and to study those phys-
ical and mathematical consequences. We consider noncommutative quantum electro-
dynamics. The prescription involves calculating the trace-like averaging procedure of
noncommutative spacetime, leading to the nonlocal theory. From experimental data on
testing the local theory it follows thatθ .7 · 10−32m2, whereθ is the dimensionful
scale of the tensorθµν characterizing noncommutative properties of spacetime arising
from low-energy limit of string theories.
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1. INTRODUCTION

We believe that a consistent relativistic quantum field theory of one-
dimensional objects, i.e., the string theory (Polchinski, 1998) is a more complete
theory with respect to the local quantum field theory (QFT) (Weinberg, 1995). One
consequence of string theories is that the space-time coordinates satisfy nontrivial
commutation relations (Ardalanet al., 1998, 1999; Bankset al., 1997; Connes
et al., 1998; de Witet al., 1988; Ishibashiet al., 1997; Schomerus, 1999; Seiberg
and Witten, 1999; Witten, 1996):

[ x̂µ, x̂ν ] = i θµν (1.1)

whereθµν is a constant antisymmetric tensor related to a background fieldBµν in
the presence of a D-brane in string theories.

The noncommutative geometry (Connes, 1994; Gracia-Bondiet al., 2000;
Madore, 1999), the Euclidean field theories on some noncommutative geometric
objects like sphere, plane, and cylinder (Grosseet al., 1996a,b, 1997), the non-
commutative analog of a Minkowski plane (Doplicheret al., 1995; Snyder, 1947),
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and also Aharonov-Bohm and Casimir effects within the framework of noncom-
mutative spaces (Chaichianet al., 2001a,b) have been investigated.

Recently, noncommutative field theories (Chaichianet al., 2001a,b; Huang,
2001; Kimura, 2001; Susskind, 2001) have been extensively studied, and the
corresponding quantum mechanical problems have also received many attention
(Athanasiuet al., 1996; Bigatti and Susskind, 2000; Chaichianet al., 2001a,b;
Dunneet al., 1990; Dunne and Jackiw, 1993; Duval and Horvathy, 2000; Floratos
and Nicolai 2000; Gamboaet al., 2000; Lukierskiet al., 1997; Morariu and
Polychronakos, 2001; Nair, 2000; Nair and Polychronakos, 2000). There are the
reviews in this field (Douglas and Nekrasov, 2001; Szabo, in press) and more re-
cent works (Banerjee, 2002, and references cited therein Bolonek and Kosinski,
2002; Jonke and Meljanac, 2002). The explicit presence of the constantθµν in (1.1)
violates Lorentz invariance. It was shown that in such noncommutative Minkowski
spaces, the ultraviolate divergences of the QFT persist (Chaichianet al., 2000a,b,c;
Filk, 1996) and unitarity and causality (Chaichianet al., 2000a,b,c; Gomis and
Mehen, 2000; Seiberget al., 2000) are also broken.

Thus, we see that an attempt to construct self-consistent QFT directly on
noncommutative Minkowski space (1.1) encounters difficulties due to violation of
basic physical principles like Lorentz and gauge inveriances, unitarity, and causal-
ity. Here we try to study this problem. Main assumption is that in string theories
spacetime has more than four dimensions with the additional noncommutative ones
so highly curved as to be undetectable at current energies. While noncommuta-
tive four-dimensional fields become as residual or averaging effects at low-energy
limit of string theories with noncommutative spacetime satisfying commutation
relations (1.1).

The noncommutative models defined by (1.1) can be realized in terms of
a ?-product. The commutative algebraA0 of functions with the usual product
( f g)(x) = f (x)g(x) is replaced by the?-product Moyal algebra:

( f ? g)(x) = exp

[
i

2
θµν∂xµ∂yν

]
|x=y = f (x)g(x)+ i

2
{ f, g}(x)+ O(θ2) (1.2)

where{ f, g} = θµν(∂µ f )(∂νg) is the Poisson bracket associated withθµν . Such
associative?-products have been proved to exist as a formal power series for
any Poisson bracket{ f, g} = θµν(x)(∂µ f )(∂νg), with a most general x-dependent
θµν(x) (Caetano and Felder, 1999; Kontsevich, 1997). To solve the problems of
the summability and unitarizability, we would like to act as follows:

1. Letθµν in (1.1) be constant defined by the formula

θµν = 1

i
θ (γµγν − γνγµ) = 1

i
σµνθ (1.3)

in anyd-dimensional spacetime with the Diracγµ-matrices.
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2. The Moyal?-product is replaced by the covariant (?)c-product:

( f (?)cg)(x) = 1

N(d)
Tr

{
exp

[
1

2
θσµν∂xµ∂yν

]}
f (x)g(y)|x=y (1.4)

Here all variables and trace are taken ind-dimensional spacetime with

{γµ, γν} = 2gµν , gµν = d (1.5)

Tr (I ) = N(d)

whereN is a regular function ofd only andN(4)= 4.

Physical meaning of the covariant (?)c-product (1.4) is that noncommutative
properties of spacetime take place in thed-dimensional case and our usual four-
dimensional spacetime and physical fields on it are defined as residual or averaging
procedure obtained by taking trace ofγµ-matrices.

Our next goal is to show that this prescription allows us to construct non-
commutative quantum field theory free from the above-mentioned difficulties in
the context of noncommutative spacetime (1.1). Outline of this work is as follows.
In Section 2, we modify definition of the Moyal?-product in anyd-dimensional
spacetime and calculate trace of its noncommutativity. Section 3 deals with free
fields and their commutation relations, the Pauli–Jordan and Green functions in
the noncommutative spacetime (1.1). The next four Sections 4–7 are devoted to
the construction of the noncommutative quantum electrodynamics and to the cal-
culation of the vacuum polarization, the anomalous magnetic moment of leptons
and the electron self-energy by means of noncommutative algebra of field operator
functions onR4. Finally, we estimate restriction on the dimensionaful scaleθ of
the tensor in (1.1). In Section 8 we study casuality and unitarity conditions for
theS?-matrix of the noncommutative field theory. Some geometrical and physical
consequences of the noncommutative theory are considered in Section 9.

2. REDEFINITION OF THE MOYAL ?-PRODUCT AND TRACE
OF NONCOMMUTATIVITY OF SPACE-TIME

In this section, we shall first describe the Moyal?-product on anyd-
dimensional spacetimeRd. The commutative algebraA0 of functions onRd is
formed by functions of the form:

f (x) = 1

(2π )d

∫
ddk eikx f̃ (k) (2.1)

where

k · x = gµνx
µxν = −x0k0+ k1x1+ · · · + kd−1 · xd−1.
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Then, the Moyal product is defined as

( f ? g)(x) = 1

(2π )2d

∫
ddk1 ddk2 f̃ (k1)g̃(k2) ei (k1+k2)x · e− i

2θµνk
µ

1 kµ2 (2.2)

whereθµν = 1
i θσµν , θ -constant,σµν-antisymmetric. This formula defines the cor-

responding noncommutative algebra of functionsAθ onRd.
Alternatively, one can start from an operator algebra generated by the Her-

mitian operatorŝxµ andx̂ν , satisfying the commutation relations

[ x̂µ, x̂ν ] = i θµν

The corresponding noncommutative algebraAθ can be given as the algebra of
operators of the form

f (x̂) = 1

(2π )d

∫
ddk f̃ (k) eikx̂ (2.3)

where

ikx̂ = gµν x̂
µkν

It can be seen easily that the product in the operator algebra (2.3) possesses an
expansion in powers ofθ , exactly corresponding to the Moyal product.

One can see that the assumption (1.3) leads to the change

( f ? g)(x) = 1

(2π )2d

∫
ddk1 ddk2

{
e−

θ
2 ·σµνkµ1 kν2

}
f̃ (k1)g̃(k2) ei (k1+k2)x (2.4)

where

σµν = γµγν − γνγµ
Now the covariant (?)c-product (1.4) takes the form

( f (?)cg)(x) = 1

(2π )2d

∫
d4k1 d4k2

1

N(d)
Tr
{
e−

θ
2 ·σµνkµ1 kµ2

}
× f̃ (k1)g̃(k2) ei (k1+k2)x (2.5)

Our next goal is to calculate trace in (2.5) for any order inθ . For this purpose, we
use algebra ofγµ-matrices ind-dimensional spacetime, defined by t’ Hooft and
Veltman (1972).

Expanding exponential in (2.5) by the Taylor series and calculating trace for
each terms, one gets

1. 1
2θ Tr (γµγν − γνγµ)kµ1 kν2 = N(d)θ [(k1 · k2)− (k2 · k1)] = 0
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2. 1

2!

θ2

22
Tr [σµνσρσ ]kµ1 kν2 · kρ1 kσ2

= 1

2!
θ2N(d)[gµσgνρ − gµρgνσ ]

(
kµ1 kν2 · kρ1 kσ2

)
= 1

2

[
(k1 · k2)2− k2

1k2
2

] · θ2N(d) (2.6)

3.
1

3!

θ3

23
Tr [σµνσρσ σλχ ]kµ1 kν2kρ1 kσ2 kλ1kχ2

= 1

3!
θ3 · N(d){−gµρ [gνχgσλ − gνλgσχ ]

+ gµσ [gνχgρλ − gνλgρχ ] − gµλ[gνρgσχ − gνσgρχ ]

+ gµχ [gνρgσλ − gνσgρλ]k
µ

1 kν2kρ1 kσ2 kλ1kχ1

= 1

3!
θ3 · N(d)

{−k2
1

(
k2

2(k1 · k2)− (k2 · k1)k2
2

)
+ (k1 · k2)

(
k2

1k2
2 − (k1 · k2)2

)− k2
1

(
k2

2(k1 · k2)

− (k2 · k1)k2
2

)− (k1 · k2)
(
k2

1k2
2 − (k1 · k2)2

)} ≡ 0 (2.7)

To see more or less approximate form of the Taylor series, we calculate
yet one trace ofσµνσρσ σλχσαβ-product terms. After a straightforward but
tedious calculation, this trace then becomes

4.
1

4!

θ4

24
Tr [σµνσρσ σλχσαβ ]kµ1 kν2kρ1 kσ2 kλ1kχ2 kα1 kβ2

= 1

4!
θ4N(d){−gµρ [gνσ (gλβgλα − gλαgχβ)− gνλ(gσβgχα − gσαgχβ)

+ gνχ (gσβgλα − gσαgλβ)− gνα(gσλgχβ − gσχgλβ)

+ gνβ(gσλgχα − gσχgλα)] + gµσ [gνρ(gλβgχα − gλαgχβ)

− gνλ(gρβgχα − gραgχβ)+ gνχ (gρβgλα − gραgλβ)

− gνα(gρλgχβ − gρχgλβ)+ gνβ(gρλgχα − gρχgλα)]

− gµλ[gνρ(gσβgχα − gσαgχβ)− gνσ (gρβgχα − gραgχβ)

+ gνχ (gρβgσα − gραgσβ)− gνα(gρβgσχ − gρχgσβ)

+ gνβ(gραgσχ − gρχgσα)] + gµχ [gνρ(gσβgλα − gσαgλα)

− gνσ (gρβgλα − gραgλβ)+ gνλ(gρβgσα − gραgσβ)

− gνα(gρβgσλ − gρλgσβ)+ gνβ(gραgσλ − gρλgσα)]

− gµα[gνρ(gσλgχβ − gσχgλβ)− gνσ (gρλgχβ − gρχgλβ)
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+ gνλ(gρβgσχ − gρχgσβ)− gνχ (gρβgσλ − gρλgσβ)

+ gνβ(gρχgσλ − gρλgσχ )] + gµβ [gνρ(gσλgχα − gσχgλα)

− gνσ (gρλgχα − gρχgλα)+ gνλ(gραgσχ − gρχgσα)

− gνχ (gραgσλ − gρλgσα)+ gνα(gρχgσλ − gρλgσχ )]}

× kµ1 kν2kρ1 kσ2 kλ1kχ2 kα1 kβ2 =
θ4

4!
N(d)

[
(k1 · k2)2− k2

1k2
2

]2
(2.8)

Thus, one can see that trace of expression

Iθ = 1

N(d)
Tr
[
e−

1
2θµνk

µ

1 kν2
]

(2.9)

due to noncommutativity of spacetime is approximated by the elementary function

Iθ = cosh

(
θ

√
(k1 · k2)2− k2

1k2
2

)
(2.10)

at least up to desired order ofθ5.
In accordance with the formulas (2.9) and (2.10) the covariant (?)c-product

(2.5) acquires the form in the momentum space

( f (?)cg)(x) = 1

(2π )2d

∫
ddk1 ddk2 cosh

(
θ

√
(k1 · k2)2− k2

1k2
2

)
× f̃ (k1)g̃(k2) ei (k1+k2)x (2.11)

or in the coordinate representation

( f (?)cg)(x) = cosh

(
θ

√(
∂
µ
x · ∂ y

µ

)2− hx · hy

)
f (x)g(y)|y=x (2.12)

where

∂x
µ =

∂

∂xµ
=
(
∂

∂x0
, E∇
)

and hx = ∂2

∂x02
− E∇2

We see that residual effect resulting from the averaging procedure (taking trace)
on the noncommutative spacetime leads to the nonlocal commutative algebraAθ
of functions with the mixing product like (2.11) and (2.12). We call this type of
correlation nonlocal product.

3. OPERATOR PRODUCT OF NONCOMMUTATIVE
QUANTIZED FIELDS

In this section, we investigate commutation relations and Green functions
of noncommutative quantized fields. We consider here only scalar particles. The
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?-product of quantized scalar fieldsϕ(x) defines as

ϕ(x) ? ϕ(x) = 1

(2π )8

∫
d4k1 d4k2 e−

i
2θµνk

µ

1 kν2 ϕ̃(k1)ϕ̃(k2) ei (k1+k2)x (3.1)

and its covariant (?)c-product reads

(ϕ(x)(?)cϕ(y)) = cosh

(
θ

√(
∂
µ
x · ∂ y

µ

)2− hx · hy

)
ϕ(x)ϕ(y) (3.2)

The commutator of noncommutative field operatorsϕ(x) takes the form

Dθ (x − y) = ϕ(x)(?)cϕ(y)− ϕ(y)(?)cϕ(x)

= cosh

(
θ

√(
∂
µ
x · ∂ y

µ

)2− hx · hy

)
1(x − y) (3.3)

where

1(x) = i

(2π )3

∫
d4k ε(k0)δ(k2+m2) e−ikx

is the Pauli-Jordan function of the scalar particle. From this it follows diretly,

Dθ (x − y) = 1(x − y) (3.4)

since cos 0= 1.
Similar definition for the Green function of the scalar particle holds

Dc
θ (x − y) = 〈0|T [ϕ(x)(?)cϕ(y)]|0〉 =

︷ ︸︸ ︷
ϕ(x)(?)cϕ(y)

= cosh

(
θ

√(
∂
µ
x · ∂ y

µ

)2− hx · hy

)
1c(x − y) ≡ 1c(x − y) (3.5)

where1c(x − y) is the usual local Green function of the scalr field. It is obvious
that all 2-point functions of noncommutative quantized fieldsϕ(x) coincide with
their local ones:

D±θ (x) = 1±(x), Dadv,ret
θ (x) = 1adv,ret(x), Dc

θ (x) = 1c(x) (3.6)

We will show below that nontrivial contributions due to noncommutativeity of
spacetime appear only in the case of interacting fields. In other words, interaction
Lagrangians and Feynman diagrams are changed in accordance with the definition
of the?-product of noncommutative quantized fields. Let us consider, for example,
theϕ3(x)-theory. Its Lagrangian takes the form

Lθ = 1

3!
g : ϕ(x) ? ϕ(x) ? ϕ(x) : (3.7)

Sθ -matrix for this noncommutative theory defines as

Sθ = T ? exp

{
i
∫

d4xLθ (x)

}
(3.8)
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We write theSθ -matrix in the momentum representation. According to the
Wick theorem after taking the normal form, term ofn-th order of the scattering
matrix can be expressed by sum of terms∫

dx1 . . .

∫
dxn K ?

θ (x1, . . . , xn) : ? · · · ? ϕ(xi ) ? · · · ? ϕ∗(xj ) ? · · · ? : (3.9)

where coefficient functionsK ?
θ (x, . . . , xn) correspond to internal lines of the

Feynman diagrams and are formed by?-products of the Green functions:

?1(xi − xj ) ? 1(xj − xk) ? · · · (3.10)

While a normal?-product

: ? · · · ? ϕ(xj ) ? · · · ? ϕ?(xi ) ? · · · ? : (3.11)

contains free operator fields corresponding to external lines of diagrams.
The structure of the matrix elements of theSθ -matrix has the general form

8∗...p′... ? Sθ ? 8...p... (3.12)

where initial8...p... and final8∗...p′...-states are formed by means of creation oper-
atorsa+(k):

8...k... = a+1 (k1)a+2 (k2) . . .a+n (kn)80 (3.13)

The matrix element

8∗...p′... : ? · · · ? ϕ(xj ) ? · · · ? ϕ∗(xi ) ? · · · ? : 8...p... (3.14)

is represented in the form of the?-products resulting from commutations between
operators

ϕ−(xj ) with a+(k) =
∫

dk0 θ (k0)a∗+(k)δ(k2+m2)
√

2k0

and

ϕ+(xi ) with a∗−(k) =
∫

dk0 θ (k0)a∗−(k)δ(k2+m2)
√

2k0

Thus, after carrying out commutations, the matrix element (3.14) is indeed ex-
pressed by the?-product:

(2π )−3/2 e−ik1x1 ? (2π )−3/2 e−ik2x2 ? · · · ? (2π )−3/2 e−ik ′1x′1 ? (2π )−3/2 e−ik ′2x′2 ? · · ·
of plane waves.

It is easy to realize the?-productSθ -matrix elements in Feynman diagrams.
For example, the following matrix element

∼
∫

d4x
∫

d4y e−i px ? 1(x − y) ? 1(y− x) ? eip′y (3.15)
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Fig. 1. Primitive Feynman diagram in noncommutative
scalar 1

3! g.ϕ(x) ? ϕ(x) ? ϕ(x):-theory.

corresponds to the Feynman diagram shown in Fig. 1, in x-space. In the momentum
space it takes the natural form

5(p) = g2

(2π )4

1

i

∫
d4k

× exp

[
1

2
θσµν pµkν + 1

2
θσρσkρ(k− p)σ − 1

2
θσαβ pα(k− p)β

]
× 1

k2+m2− i ε
· 1

(k− p)2+m2− i ε
(3.16)

Taking into account the identityσµν pµpν = σµνkµkν = 0 and calculating
trace of theγµ-matrices, one gets

5θ (p) = Tr5(p) = g2

(2π )4

1

i

∫
d4k cosh

(
θ
√

(k · p)2− p2k2
)

× 1

k2+m2− i ε

1

(k− p)2+m2− i ε
(3.17)

Here rapidly oscillation and sign variable function coshi θx can be expressed in
terms of the Mellin representation:

cosh
(
θ
√

(k · p)2− p2k2
)
= 1

2i

∫ −β−i∞

−β+i∞
dξ

1

sinπξ

θ2ξ [−(k · p)2+ p2k2]ξ

0(1+ 2ξ )

(3.18)

whereβ > 0 is any number. Then, we see that after passing to the Euclidian or a
Wick rotation, whole integral (3.17) is converged∫ ∞

0

dk · k3

k4
[k2]−β < 0, k =

√
k2

In next sections we will study Feynman diagrams in the noncommutative
quantum electrodynamics.
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4. NONCOMMUTATIVE QUANTUM ELECTRODYNAMICS,
THE LAGRANGIAN DENSITY, COUNTERTERMS,
AND GAUGE INVARIANCE

In this section, we shall define the Lagrangian density and proceed to carry
out some techniques with the?-product to show gauge invariance of the theory of
charged leptons that interact with the electromagnetic field in non-commutative
spacetime. For noncommutative spinor (electron) and photon fields the Lagrangian
density is taken in the form of the?-product:

L = −1

4
F∗µνB ? FBµν − ψ̄ B(x) ?

[
γµ
(
∂µ + i eB AµB(x)?

)+mB
]
ψB(x) (4.1)

where

Fµν

B ≡ ∂µAνB − ∂νAµB − i eB(Aµ ? Aν − Aν ? Aµ)

andψB are the bare (unrenormalized) noncommutative fields of the photon and
electron, and−eB andmB are the bare charge and mass of the electron. As in the
local field theory, we introduce renormalized fields, charge, and mass:

ψ ≡ Z−1/2
2 ψB, Aµ ≡ Z−1/2

3 AµB (4.2)

e≡ Z1/2
2 eB, m≡ mB + δm (4.3)

with the constantsZ2, Z3, andδm. As usually, the Lagrangian may then be written
in terms of renormalized noncommutative quantities

L = L0+ L1+ L2 (4.4)

where

L0 = −1

4
F∗µν ? Fµν − ψ̄ ? [γµ∂

µ +m]ψ (4.5)

L1 = −i eAµ(x) ? ψ̄(x) ? γ µψ(x) (4.6)

andL2 is defined as a sum of “counterterms”

L2 = −1

2
(Z3− 1)F∗µν ? Fµν − (Z2− 1)ψ̄ ? [γµ∂

µ +m]ψ

+ Z2δm ? ψ̄ ? ψ − i e(Z2− 1)Aµ(x) ? ψ̄(x) ? γ µψ(x) (4.7)

Notice that all of the terms inL2 are of second order and higher order ine, and
that these terms ensure to cancel the ultraviolet divergences that arise from loop
graphs in the noncommutative quantum electrodynamics.

We shall now show that the Lagrangian density (4.1) is invariant under the
noncommutative analog of gauge transformations with the?-product:

ψB(x)→ eiλ(x) ? ψ ′B(x), ψ̄
′
B(x)→ ψ̄ B(x) ? e−iλ(x) (4.8)
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and

AµB(x)→
[

A′µB (x)− 1

eB

∂λ(x)

∂xµ

]
∗

→ eiλ(x) ? A′µB (x) ? e−iλ(x) − 1

eB
eiλ(x) ?

∂λ(x)

∂xµ
? e−iλ(x) (4.9)

with an arbitrary functionλ(x).
Taking into account formulas (4.8) and making use of the differentiation

∂µψB = eiλ(x) ? i
∂λ(x)

∂xµ
? ψ ′ + eiλ(x) ?

∂

∂xµ
ψ ′

one gets

ψ̄ B(x) ? [γµ∂
µ +m]ψB(x)→−ψ̄ ′B(x) ? e−iλ(x) ?

×
[
γµ

(
eiλ(x) ? i

∂λ(x)

∂xµ
? ψ ′B(x)+ eiλ(x) ?

∂

∂xµ
ψ ′(x)

+ i eB AµB(x) ? eiλ(x) ? ψ ′B(x)

)
+mB eiλ(x) ? ψ ′B(x)

]
(4.10)

where the noncommutative photon fieldAµB(x) is transformed by the formula (4.9).
Substitute it into (4.10) forAµB(x)-field and prove its gauge invariance

−ψ̄ B(x) ?
[
γµ
(
∂µ + i eB AµB(x)?

)+m
]
ψB(x)→−ψ̄ ′B(x) ? e−iλ(x) ?

×
[
γµ

(
eiλ(x) ? i

∂λ(x)

∂xµ
? ψ ′B(x)+ eiλ(x) ?

∂

∂xµ
ψ ′(x)

+ i eB eiλ(x) ? A′µ(x) ? e−iλ(x) ? eiλ(x) ? ψ ′(x)

− i eiλ(x) ?
∂λ(x)

∂xµ
? e−iλ(x) ? eiλ(x) ? ψ ′B(x)

)]
+mB eiλ(x) ? ψ ′(x)

= ψ̄
′(x) ?

[
γµ
(
∂µ + i eB A′µB (x)?

)+m
]
ψ ′B(x) (4.11)

where we have used the identitye−iλ(x) ? e−iλ(x) = 1.
It is natural that the field strength

Fµν

B = ∂µAνB − ∂νAµB − i eB
(
AνB ? AµB − AµB ? AνB

)
(4.12)

in (4.1) and (4.5) is given by a non-Abelian formula which is invariant with respect
to the transformation (4.9), where

∂λ

∂xµ
?
∂λ

∂xν
= ∂λ

∂xν
?
∂λ

∂xµ
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and

∂λ

∂xν
? Aµ 6= ∂λ

∂xµ
? Aν

If the commutator

[∂νλ, ?Aµ] = ∂λ

∂xν
? Aµ − Aµ ?

∂λ

∂xµ

is equal to zero, then the last term in (4.12) is disappeared for noncommutative
photon fieldsAθµ(x).

One can verify that the field strength (4.12) is valid for a more general case
when both the transformation functionλ(x) and the gauge fieldsAµ(x) possess
an internal symmetry defined by their matrix valuesλ̂(x) andÂµ(x). However the
nonlinear term in (4.12)

(
AνB ? AµB − AµB ? AνB

) = 1

(2π )8

∫
d4 p d4q e−i (p+q)x

×[e1
2θσρσqp pσ − e

1
2θσαβqα pβ

]
Ãν(q)Ãµ(p)

goes to zero when we will use the covariant (?)c-product instead of the usual Moyal
?-product between them.

Below we use the following type of?-products and those covariant versions:

f (x) ? g(x) = 1

(2π )2d

∫
ddp ddq e−

1
2θσµν pµqν ei (p+q)x f̃ (p)g̃(q),

f (x) ? F(x − y) ? g(x) = 1

(2π )3d

∫
ddp ddk ddq e−

1
2θσµν pµkν+ 1

2θσρσ kρqσ

× eipx+iqy+ik(x−y) f̃ (p)F̃(k)g̃(q)

and

f (x) ? F(x − y) ? G(g− x) ? g(x) = 1

(2π )4d

∫
ddp ddk1 ddk2 ddq

× exp

[
−1

2
θσµν pµkν1 +

1

2
θσχλk

χ

1 kλ2 −
1

2
θσρσkρ2 qσ

]
× eipx+iqy+ik1(x−y)+ik1(y−x) f̃ (p)F̃(k1)G̃(k2)g̃(q)

and so on, whereσµν = γµγν − γνγµ.
We now turn to calculate Feynman diagrams in the noncommutative quantum

electrodynamics (NQED) defined by the Lagrangians (4.5), (4.6), and (4.7).
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Fig. 2. The one-loop diagram for the vacuum polarization
in noncommutative quantum electrodynamics.

5. VACUUM POLARIZATION

The Feynman rule in NQED is same as in the local QED with only difference
that in vertices of diagrams factors exp(− 1

2θσµν pµqν) are arisen from the products
between plane waves in external lines and the Green functions in internal lines.

In the coordinate space, the matrix element of theSθ -matrix in NQED, cor-
responding to the diagram in Fig. 2 has the form

− i : Aµ(x) ? {−i e2γ µS(x − y) ? γ νS(y− x)} ? Aν(y)

: = −i : Aµ(x) ? 5µν(x − y) ? Aν(y) :

where

5µν(x − y) = −i e2 Tr {γ µ ? S(x − y)γ µ ? S(y− x)} (5.1)

Here the?-product

e−iqx ? e−i p(x−y) ? e−i (p−q)(y−x) ? eiqy

leads to the form factor in the momentum space

exp

[
−1

2
θσµνq

µpν + 1

2
θσχλq

χ (p− q)λ + 1

2
θσρδ(p− q)ρ pδ

]
= exp

(
−1

2
θσµν pνqµ

)
(5.2)

and therefore the vacuum polarization (5.1) inp-space reads

5ρσ (q) = −i e2

(2π )4

∫
d4p e−

1
2θσµν pνqµ × Tr{[−i p̂+m]γ ρ [−i ( p̂− q̂)+m]γ δ}

(p2+m2− i ε)((p− q)2+m2− i ε)

(5.3)

Taking trace of (5.2) and keeping term of the order ofθ2, one gets

5ρσ (q) = −i e2

(2π )4

∫
d4 p

Tr{[−i p̂+m]γ ρ [−i ( p̂− q̂)+m]γ δ}
(p2+m2− i ε)((p− q)2+m2− i ε)

×
[
1+ θ

2

2
((p · q)2− p2q2)

]
(5.4)
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Next we would like to act as follows from the local theory.

1. Use the Feynman parameterization

1

(p2+m2− i ε)((p− q)2+m2− i ε)

=
∫ 1

0
dx [( p− qx)2+m2+ q2x(1− x)− i ε]−2

2. Carry out shift of the variable of integration in momentum space

p→ p+ qx

3. Calculate the trace as

3
ρσ
θ (p, q) = Tr {[−i ( p̂+ q̂x)+m]γ ρ [−i ( p̂− q(1− x))+m]γ σ }

×
[
1+ θ

2

2
((p · q)2− p2q2)

]
= 4[−(p+ qx)ρ(p− q(1− x))σ

+ (p− qx)(p− q(1− x))gρσ − (p+ qx)σ (p− q(1− x))ρ

+m2gρσ ]

[
1+ θ

2

2
((p · q)2− p2q2

]
where the factor (p · q)2− p2q2 due to noncommutativity of space-
time is invariant with respect to the shift,p→ p+ qx. Our next step
is called a Wick rotationp0→−i p4, d4 p→ (d4 p)E = dp1dp2dp3dp4

and all scalar products are evaluated using the Euclidian norma · b =
a1b1+ a2b2+ a3b3+ a4b4 with q4 = −iq0. Also, as in the local theory,
gρσ can be taken as either the Kronecker deltaδρσ , with the indices running
over 1,2,3,4, or as the usual Minkowski tensor, with the indices running
over 1,2,3,0. The integral

5ρσ (q) = e2

(2π )4

∫ 1

0
dx
∫

(d4 p)E[ p2+m2+ q2x(1− x)]−23
ρσ
θ (p, q)

(5.5)

is badly divergent, which is calculated by using the dimensional regula-
tization technique introduced in ’t Hooft and Veltman (1972) based on a
continuation from 4 to an arbitrary numberd of spacetime dimensions.

For calculation purpose, we take into account the following formulas ind-
spacetime.

1. In addition to (1.5) we have

γ µγµ = d, γµγ νγ
µ = (2− d)γν (5.6)
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2. Tr I = N(d), Trγµγν = N(d)gµν (5.7)

3. Trγµγνγαγβ = N(d)[gµνgαβ + gναgµβ − gµαgνβ ] (5.8)

4. γνγργµγσ γ
ν = (2− d)γργµγσ + 2(γµγσ γρ − γργσ γµ) (5.9)

5. γνγργµγ
ργ ν = (2− d)2γµ (5.10)

6. pµpν → p2gµν/d (5.11)

7. pµpν pρ pσ → (p2)2[gµνgρσ + gµρgνσ + gµσgνρ ]/d(d + 2) (5.12)

Further, we use the well-known formulas:
8. d4 pE → Ädkd−1dk, wherek ≡

√
p2 andÄd is the area of a unit sphere

in d dimensions

Äd = 2πd/20(d/2) (5.13)

9. There is an infinity in the one-loop contribution in NQED, arising from
the limiting behavior of the Gamma function

0

(
2− d

2

)
→ 1

(2− d/2)
− γ , (5.14)

whereγ is the Euler constant,γ = 0.5772157.
10. Make use of the limiting behavior

lim
ε→0

aε lim
ε→0

eε ln a = 1+ ε ln a (5.15)

where as usual we chooseε = 2− d/2, for d→ 4.
11. To evaluate the resulting integral like∫

d4k
(k2)n

[k2+ ν2]m

with (k2+ ν2)m coming from the combined propagator denominators in
Feynman diagrams for NQED, and (k2)n coming from the propagator
numerators and vertex momentum factors including (kq)2− k2q2 due to
noncommutativity of spacetime, we use the well-known formula∫ ∞

0
dk

kl−1

[k2+ ν2]m
= νl−2m0(l/2)0(m− l/2)

20(m)
(5.16)

wherel = d + 2m. In this work, we used this formula in the special cases
n = 0, n = 2, n = 4, andm= 2, m= 3.

12. Finally, we need some properties of the Gamma-function

z0(z) = 0(1+ z)

ψ1(z) = d ln0(z)

dz
+ 0

′(z)

0(z)
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0(ε) = 1

ε
0(1+ ε) = 1

ε
− γ + O(ε)

0(−1+ ε) = −
[

1

ε
+ 1− γ + O(ε)

]
or in the general case,

0(−n+ ε) = (−1)n

n!

[
1

ε
+
(

1+ 1

2
+ · · · + 1

n
− γ

)
+ O(ε)

]
(5.17)

The above-listed formulas are very useful to construct gauge invariant and finite
NQED in any order inθ . Here we are restricted in its second order inθ2. After such
matematical preparation, we turn to study expression (5.5) for vacuum polarization
diagram.

To carry out angular averages in (5.5), we drop all terms that are odd inp,
and replace the terms that have even numbers ofp-factors with using (5.11) and
(5.12). Also, after writing the integrand in this way as a function only ofp2, the
volume elementd4

pE is to be replaced in accordance with (5.13). Thus, expression
3
ρσ
θ (p, q)/4 acquires the form

3
ρσ
θ (p, q)/4

=
[
−2k2

d
gρσ + 2qρqσ x(1− x)+ (k2− q2x(1− x))gρσ +m2gρσ

]
+ θ

2

2

{
1− d

d
q2 · k2τρσ + 2

d

1+ d

d + 2
· q2 · k4gρσ − 2k4

d(d + 2)
· 2qρqσ

}
(5.18)

where (k ≡ p),

k2τρσ = k2[2qρqσ x(1− x)+m2gρσ ] − k2q2x(1− x)gρσ + k4gρσ

= k2[2qρqσ x(1− x)− q2x(1− x)gρσ +m2gρσ ] + k4gρσ

We now use integrals of the type of (5.16):

1)
∫∞

0 dk kd−1[k2+ ν2]−2 = 1
2(ν2)

d
2−20

(
d
2

)
0
(
2− d

2

)
2)
∫∞

0 dk k(d+2)−1[k2+ ν2]−2 = 1
2(ν2)

d
2−10

(
1+ d

2

)
0
(
1− d

2

)
3)
∫∞

0 dk k(d+4)−1[k2+ ν2]−2 = 1
2(ν2)

d
20
(
2+ d

2

)
0
(− d

2

)
Then, expression (5.5) consists of two parts

ρσ∏
(q) =

ρσ∏
local

(q) =
ρσ∏
1θ

(q) (5.19)
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where

5
ρσ

local(q) = 4e2Äd

(2π )4
0

(
d

2

)
0

(
2− d

2

)
[qρqσ − q2gρσ ]

×
∫ 1

0
dx · x(1− x)[m2+ q2x(1− x)]

d
2−2 (5.20)

is the usual local quantum electrodynamical result and

5
ρσ

1θ (q) = θ2

2

2e2Äd

(2π )4

∫ 1

0
dx

{
0

(
2+ d

2

)
0

(
−d

2

)
[m2+ q2x(1− x)]

d
2

×
[

1− d

d
q2gρσ + 2

2

1+ d

d + 2
· q2gρσ − 4

d(d + 2)
· qρqσ

]
+0

(
1+ d

2

)
0

(
1− d

2

)
[m2+ q2x(1− x)]

d
2−1 · 1− d

d
q2

×[2qρqσ x(1− x)− q2x(1− x)gρσ +m2gρσ ]

}
(5.21)

For the last formula, we use the following transformations:

1) 1− d

d
+ 2(1+ d)

d(d + 2)
= 4

d(d + 2)
− d(d − 1)

(d + 2)d

2)
0

(
2+ d

2

)
0

(
−d

2

)(
− d

d + 2

)
= 0

(
1+ d

2

)
0

(
1− d

2

)
and therefore, one can combine first terms in the first expression of (5.21)
with its second whole expression to give

3)
0

(
1+ d

2

)
0

(
1− d

2

)(
1− d

d

)
[m2+ q2x(1− x)]

d
2−1

× [2qpqσq2x(1− x)− 2q4x(1− x)gρσ ]

Thus, expression (5.21) takes the form

5
ρσ

1θ (q) = 2e2Äd

(2π )4
· θ

2

2

∫ 1

0
dx

{
0

(
2+ d

2

)
0

(
−d

2

)
4

d(d + 2)
[m2 + q2x(1− x)]

d
2

×(q2gρσ − qpqσ )− 0
(

1+ d

2

)
0

(
1− d

2

)(
1− d

d

)
× [m2 + q2x(1− x)

] d
2−1 · 2q2x(1− x)(q2gρσ − qpqσ )

}
(5.22)
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After little algebra of the Gamma functions

0

(
2+ d

2

)
= d + 2

2
0

(
1+ d

2

)
, 0

(
1− d

2

)
= −d

2
0

(
−d

2

)
and

−1

d
0

(
1− d

2

)
= 1

2
0

(
−d

2

)
one gets

5
ρσ

1θ (q) = 2e2Äd

(2π )4
· θ

2

2
(q2qρσ − qpqσ )0

(
1+ d

2

)
0

(
−d

2

)
×
∫ 1

0
dx

[
2

d
[m2+ q2x(1− x)]

d
2 + (1− d)q2x(1− x)

× (m2+ q2x(1− x))
d
2−1

]
(5.23)

Thus, we find vacuum polarization in NQED

5ρσ (q) = 4e2Äd

(2π )4
0

(
d

2

)
0

(
2− d

2

)
(qpqσ − q2gρσ )

×
∫ 1

0
dx[m2+ q2x(1− x)]

d
2−2

{
x(1− x)+ θ

2

2
· 1

2− d

× (m2+ q2x(1− x))

[
d

2
(m2+ q2x(1− x))+ (1− d)q2x(1− x)

]}
(5.24)

We note the very remarkable result that this contribution satisfies relation

qρ5
ρσ (q) = 0 (5.25)

that is the basis of the conservation and neutrality of the electric current in NQED
in which dimensional regularization gives also this result of the conservation of
current that does not depend on the dimensionality of spacetime.

Owing to (5.14) the Gamma function0(2− d
2) in (5.25) has singularity at the

limit d − 4. Moreover, as shown in Section 4, there is another term that must be
added to5ρσ (q), arising from the term− 1

4(Z3− 1)Fµν
θ ? Fθ

µν in the interaction
Lagrangian. This term has a structure like Eq. (5.24)

5
ρσ

L2
(q) = −(Z3− 1)(q2gρσ − qpqσ ) (5.26)

so as to ordere2, the full5ρσ

f has the form

5
ρσ

f = (q2gρσ − qpqσ )5θ (q
2) (5.27)
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with

5θ (q
2) = −4e2Äd

(2π )4
0

(
d

2

)
0

(
2− d

2

)∫ 1

0
dx[m2+ q2x(1− x)]

d
2−2

×
{

x(1− x)+ θ2

2d(2− d)
(m2+ q2x(1− x))

× [2m2+ q2x(1− x)(2+ d − d2)]

}
− (Z3− 1) (5.28)

As in the local QED, the definition of the noncomutative renormalized electro-
magnetic field requires that5θ (0)= 0. Therefore, to ordere2,

Z3 = 1− 4e2Äd

(2π )4
0

(
d

2

)
0

(
2− d

2

)
(m2)

d
2−2

∫ 1

0
dx

[
x(1− x)+ θ2

d(2− d)
·m4

]
×
[
(m2 + q2x(1− x))

d
2−2 − (m2)

d
2−2
]

(5.29)

Now we can remove the regulatization allowingd to approach its physical
valued = 4. There is an infinity in the one-loop contribution, arising from the
limiting behavior of the Gamma function (5.14). According to the local QED a
finite part of5θ (q2). is extracted from the mathematical prescription

5
f
θ (q2) = 5θ (q

2)−5θ (0)− ∂5θ (q2)

∂q2

∣∣∣∣
q2=0

· q2− 1

2

∂5θ (q2)

∂q4

∣∣∣∣
q2=0

· q4 (5.30)

A straightforward calculation gives

1) 5θ (0)= I · (m2)
d
2−2(x(1− x)+ θ̃2 · 2m4),

2) ∂5θ (q2)

∂q2

∣∣∣∣
q2=0

· q2

= I

{(
d

2
− 2

)
(m2)

d
2−3 · x(1− x)+ (x(1− x)+ θ̃2 · 2m4)+ (m2)

d
2−2

× [θ̃2 · x(1− x)2m2+ θ̃2 ·m2(2+ d − d2)x(1− x)]

}
q2, (5.31)

and

3) ∂5θ (q2)

∂q4

∣∣∣∣
q2=0

· q4 = I

{(
d

2
− 2

)(
d

2
− 3

)
(m2)

d
2−4 · x2(1− x)2

× (x(1− x)+ θ̃2 · 2m4)+ 2

(
d

2
− 2

)
(m2)

d
2−3 · x2(1− x)2m2θ̃2

× (4+ d − d2)+ 2(m2)
d
2−2θ̃2 · x2(1− x)2(2+ d − d2)

}
· q4 (5.32)
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where

θ̃2 = θ2

2− d
· 1

2d
, I = −4e2Äd

(2π )4
0

(
d

2

)
0

(
2− d

2

)∫ 1

0
dx

The poles atd = 4 obviously cancel in5θ (q2), because ford = 4 both (m2+
q2x(1− x))

d
2−2 and (m2)

d
2−2 have the same limit, unity (see formula (5.15)). For

the same reason, the term−γ in 0(2− d/2) cancels in the total5(q2), although
γ it does make a finite contribution toZ3− 1. There are other finite contributions
to Z3− 1, that arise from the product of the pole in0(2− d/2) with the linear
terms in the expansion ofÄd0(d/2) aroundd = 4, but these also cancel in the
total5θ (q2).

The only terms that do contribute to5θ (q2) in the limit d→ 4 are those
arising from the product of the pole in0(2− d/2) with the linear terms in the
expansion of (m2+ q2x(1− x))

d
2−2 and (m2)

d
2−2 in powers ofd − 4:

(m2+ q2x(1− x))
d
2−2− (m2)

d
2−2→

(
d

2
− 2

)
ln

(
1+ q2x(1− x)

m2

)
due to the formula (5.15) and are also those arising from the product0(2− d/2) ·
( d

2 − 2) in (5.30).
Finally, all these simpler calculations give

5θ (q
2) = e2

2π2

∫ 1

0
dx

{[
x(1− x)− θ2

16
(2m4 − 8m2q2x(1− x)− 10x2(1− x)2q4)

]
ln

(
1+ q2x(1− x)

m2

)
+ θ2

16
(2m2q2x(1− x)− 9x2(1− x)2q4)

}
(5.33)

The physical importance of the vacuum polarization in NQED can be explored
by considering its effect on the scattering of two charged particles of spin1

2. The
Feynman diagrams of Fig. 3 make contributions to the scatteringSθ -matrix element
of the form

Sa
θ (1, 2→ 1′, 2′) = e−

1
2 θσρσ (pρ2+pρ1 )p′σ1 (2π )−6δ4(p′1 + p′2 − p1 − p2)

× [e1(2π )4ū(p′1)γ µu(p1)]

[
−i (2π )−4 1

q2

]
[e2(2π )4ū(p′2)γµu(p2)],

Sb
θ (1, 2→ 1′, 2′) = e−

1
2 θσρσ (pρ2+pρ1 )p′σ1 (2π )−6δ4(p′1 + p′2 − p1 − p2)

×[e1(2π )4ū(p′1)γ µu(p1)]

[
−i (2π )−4 1

q2

]2

×[i (2π )4(q2gµν + gµgν)5θ (q
2)][e2(2π )4ū(p′2)γ νu(p2)]

where the factor exp[− 1
2θσρσ (p1+ p2)ρ p′σ1 ] is arising form the?-product:

e−i p1x ? eip2x ? e−iq(x−y) ? e−i p′1y ? eip′2y
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Fig. 3. Two diagrams for the scattering of charged particles in NQED.

In the momentum space it takes the form:

exp

{
1

2
θσµν pµ1 pν2 +

1

2
θσρσ pρ2 (p′2− p2)σ + 1

2
θσαβ p′α1 (p1− p′1)β

+ 1

2
θσλχ p′λ1 p′χ2

}
= exp

[
−1

2
θσρσ (p1+ p2)ρ p′σ1

]
and e1 and e2 are the charges of the two particles being scattered:5θ (q2) is
calculated using fore in Eq. (5.33) the magnitude of the charge of the particle
circulating in the loop in Fig. 3; andqµ is the momentum transferq = p1− p′1 =
p′2− p2. Using the conservation propertyqµū(p′1)γ µu(p1) = 0 the two diagrams
together yield anSθ -matrix element:

Sa+b
θ (1, 2→ 1′, 2′) = −i e1 e2

4π2q2
e−

1
2θσρσ (p1+p2)ρ p′σ1 [1+5θ (q

2)]

×δ4(p′1+ p′2− p1− p2)[ū(p′1)γ µu(p1)][ ū(p′2)γµu(p2)]

(5.34)

In the nonrelativistic limit,ū(p′1)γ 0u(p1) ∼ i δσ ′1σ1 while ū(p′1)γ i u(p1) ' 0, and
likewise for particle 2. In this limitq0 is also negligible compared with|Eq|.
Equation (5.34) in this limit becomes

Sa+b
θ (1, 2→ 1′, 2′) = −i e1 e2

4π2q2
e−

1
2θσρσ (p1+p2)ρ p′σ1 [1+5θ (q

2)]

×δ(4)(p′1+ p′2− p1− p2)δσ ′1σ1δσ ′2σ2 (5.35)

This expression may be compared with theS-marix in the Born approximation
due to a local spin-independent central potentialV(r ):

SBorn
θ (1, 2→ 1′, 2′) = −2π i δ(E′1+ E′2− E1− E2) e

1
2θσ00(E1+E2)E′1

×TBorn(1, 2→ 1′, 2′) (5.36)

TBorn(1, 2→ 1′, 2′) = δσ ′1σ1δσ ′2σ2

∫
d3x1

∫
d3x2V(|x1− x2|)

×(2π )−6 e−i P′2x1 ? e−i P′1x2 ? ei P1x1 ? ei P2x2 (5.37)
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Settingx1 = x2+ r , this yields

TBorn ≈ −i

4π2
δσ ′1σ1δσ ′2σ2 e−

1
2θσi j p′1i ε j δ(p′1+ p′2− p1− p2)

×
∫

d3r V (r ) ? e−i qr
[
1+ θ

2

2
[(p1 · (q+ Eε))2− p2

1(q+ Eε)2

]
(5.38)

where q = p1− p′1 = p′2− p2 and Eε = p1+ p2 = p′1+ p′2 are the momentum
transfer and the total energy of the system. Comparing this with Eq. (5.34) shows
that in the nonrelativistic limit the diagrams of Fig. 3 give the sameSθ -matrix
element as a potentialV(r ) such that∫

d3r V (r ) ? e−i qr ≈ e1 e2
1+5θ (q2)

q2

or, inverting the Fourier transform

V(r ) = e1 e2

(2π )3

∫
d3q ei qr

[
1+5θ (q2)

q2

]
(5.39)

Equation (5.39) is to first order in the radiative correction the same potential
energy that would be produced by the electrostatic interaction of two extended
charges distributione1ρθ (x) ande2ρθ (y) at a distancer :

V(|r |) = e1 e2

∫
d3x

∫
d3y

ρθ (x) ? ρθ (y)

4π |x− y+ r | (5.40)

where

ρθ (x) =
[
1− e2θ2

64π2(2π )3

(
1

3
m2 E∇2+ 3

10
E∇4

)]
δ3(r )

+ 1

2(2π )3

∫
d3q51θ (q2) ei qr (5.41)

Here51θ (q2) is given by the term with ln (1+ q2(1−x)
m2 ) in (5.33). Note that∫

d3r ρθ (r ) = 1+ 1

2
5θ (0)= 1 (5.42)

so the total charges of particles 1 and 2, as determined from the long-range part of
the Coulomb potential, are the same constantse1 ande2 that govern the interactions
of the renormalized electromagnetic field in NQED.

As in the local QED, for|r | 6= 0 the integral (5.41) can be carried out by a
straightforward contour integration:

ρθ (r ) = − e2

8π3r 3

∫ 1

0
dx · x(1− x)

{
1− θ

2

8

[
m4

x(1− x)
+ 4m2 E∇2
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−5x(1− x) E∇4
]}(

1+ mr√
x(1− x)

)
exp

( −mr√
x(1− x)

)
On the other hand, the integral ofρθ (r ) over allr equals+1. Therefore,ρθ (r ) must
contain a term (1+ Nθ )δ3(r ) that is singular atr = 0, with Nθ chosen to satisfy
Eq. (5.42):

Nθ = e2θ2

64π2(2π )3

(
−1

3
m2 E∇2− 3

10
E∇4

)
+ e2

8π3

∫
d3r

r 3

×
∫ 1

0
dx · x(1− x)

{
1− θ

2

8

[
m4

x(1− x)
+ 4m2 E∇2− 5x(1− x) E∇4

]}
(

1+ mr√
x(1− x)

)
exp

( −mr√
x(1− x)

)
(5.43)

The complete expression for the charge distribution function is then

ρθ (r ) = (1+ Nθ )δ
3(r )− e2

8π3r 3

∫ 1

0
dx · x(1− x)

{
1− θ

2

8

[
m4

x(1− x)
+ 4m2 E∇2

−5x(1− x) E∇4
]}(

1+ mr√
x(1− x)

)
exp

( −mr√
x(1− x)

)
(5.44)

The physical meaning of this result is that a bare point charge attracts of charge
of opposite sign out of the vacuum, repelling their antiparticles to infinity, so that
the bare charge is partially shielded, yielding a renormalized charge smaller by a
factor 1/(1+ Nθ ).

The vacuum polarization effect of Feynman graph (b) in Fig. 3 is to shift the
energy of an atomic state with wave functionψ(r ) by

1Eθ =
∫

d3r1V(r ) ? [ψ∗(r ) ? ψ(r )]

= 1

(2π )9

∫
d3r

∫
d3q

∫
d3Q

∫
d3k ei qr ? e−i kr ? ei Qr

×1Ṽ(q)ψ̃∗(k)ψ̃(Q) = 1

(2π )9

∫
d3r

∫
d3q

∫
d3Q

∫
d3k

× exp

[
1

2
θσµνq

µkν + 1

2
θσρσkρQσ

]
1Ṽ(q)ψ̃∗(k)ψ̃(Q)ei qr−i kr+i Qr

(5.45)
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Here

λ = exp

[
1

2
θσi j q

i k j + 1

2
θσnmknQm

]
= exp

[
1

2
θσi j (q

i + Qi )k j

]
, σi j = σiσ j − σ jσi

(σi j are the Pauli matrices)

and

〈λ〉 = 1

N(d)
Trλ = cosh

(
θ
√

((q+Q) · k)2− k2 · (q+Q)2
)

We find

1Eθ = cosh

(
θ

√
( E∇x · E∇y)2−1x ·1y

)∫
d3x1V(x)ψ∗(y)ψ(x)|x=y (5.46)

Here1V(x) is the perturbation in the potential (5.39):

1V(x) = e1 e2

(2π )3

∫
d3q ei qr

[
5θ (q2)

q2

]
(5.47)

We know that the effect of the vacuum polarization is very much larger for
orbital angular momentuml = 0 than for its higher values. Forl = 0 the wave
function is approximately equal to the constant forr less than or of the order of
m−1, so Eq. (5.46) becomes

1Eθ = |ψ(0)|2
∫

d3r1V(r ) (5.48)

since cosh 0= 1. Using Eqs. (5.47) and (5.33), the integral of the shift in the
potential (fore1 e2 = −Ze2) is∫

d3r V (r ) = −Ze25′θ (0) (5.49)

Direct calculation of Eq. (5.33) gives

5′θ (0)= e2

2π2

∫ 1

0
dx

[
x2(1− x)2

m2
− θ

2m2x(1− x)

8
+ θ

2m2

8
x(1− x)

]
and therefore,

−Z e25′θ (0)= − 4

15
Z
α2

m2
, α = e2

4π

We see that an immediate contribution to the energy shift due to noncom-
mutativity of spacetime is zero at least up to order ofθ4. Therefore, in states of
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hydrogenic atoms withl = 0 and principal quantum numbern the wave function
at the origin is

ψ(0)= 2√
4π

(
Zαm

n

)3/2

(5.50)

so the energy shift (5.48) is almost equal to the local one

1E = − 4

15

Z4α5m

πn3
+ O(θ4) (5.51)

Finally, notice that although vacuum polarization contributes only a small part
of the radiative corrections in ordinary atoms, it dominates the radiative corrections
in muonic atoms, in which a muon takes the place of the orbiting electron.

6. ELECTRON SELF-ENERGY IN NONCOMMUTATIVE
QUANTUM ELECTRODYNAMICS

The complete electron propagator in NQED is given by the sum

[−i (2π )−4S′θ (p)
] = [−i (2π )−4S(p)]

+ [−i (2π )−4S(p)][ i (2π )46θ (p)][−i (2π )−4S(p)] + · · ·
where

S(p) = −i p̂+me

p2+m2
e− i ε

The sum is trivial, and gives

S′θ (p) = [i p̂+me−6θ − i ε]−1 (6.1)

In lowest order there is a one-loop contribution to6θ , given by Fig. 4:

−i : ψ̄(x) ? 6θ (x − y) ? ψ(y) :

where

6θ (x − y) = −i e24(x − y) ? γµS(x − y)γµ

The?-product:

e−iqx ? e−ip(x−y) ? e−i (p−q)(y−x) ? eiqy

Fig. 4. The one-loop diagram for the electron self-energy
function in NQED.
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leads to the factor

e−
1
2θσµνq

µ pν (6.2)

in the momentum space.
Similar to the vacuum polarization, the electron self-energy function has the

form

6θ (q) = i e2

(2π )4

∫
d4 p

1

p2− i ε

[
γρ(−i q̂ + i p̂+m)γρ
(q − p)2+m2− i ε

×
{

1+ θ
2

2
((p.q)2− p2q2)

}]
(6.3)

here and below we have used notationm= me.
Making use of the Feynman parameterization formula, invariance property

of the factor (pq)2− p2q2 with respect to the shiftp→ p+ qx and the formula
(5.6), one gets

6θ (q) = i e2

(2π )4

∫ 1

0
dx
∫

d4 p
[
(p− qx)2+ q2x(1− x)+m2x − i ε

]−2

× [−i (q̂ − p̂)(2− d)+md]

[
1+ θ

2

2
((p.q)2− p2q2)

]
Going to the Wick rotation and using thed-dimensional regularization procedure
as before, we obtain

6θ (q) = −e2πd/2

2(π )4
0

(
d

2

)
0

(
2− d

2

)∫ 1

0
dx[−i (2− d)(1− x)q̂ + dm]

×[q2x(1− x)+m2x]
d
2−2

[
1+ θ

2

x
· 1− d

2− d
q2(q2x(1− x)+m2x)

]
(6.4)

The interaction (4.7) also contributes a renormalization counterterm
−(Z2− 1)(i q̂ +m)+ Z2δm in 6θ (p) with Z2 and δm determined by the con-
dition that the complete propagatorS′θ (p) regarded as a function ofi q̂ should have
a pole ati q̂ = −m with residue unity.

To remove the regularization, allowingd to got to its limitd→ 4, we act as
follows. We calculate the quantity6θ (q) and its derivatives

∂6

∂ i q̂
,

∂26

∂(i q̂)2
,

∂36

∂(i q̂)3
. . .

∂56

∂(i q̂)5



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474207 November 12, 2003 0:45 Style file version May 30th, 2002

Noncommutative Field Theory 2635

at the pointi q̂ = −m, and use the Taylor series:

6θ (p) − 6θ (p)|i q̂=−m + i
∂6θ

∂q̂
|i q̂=−m(i q̂ +m)− 1

2!

∂26θ

∂(i q̂)2
|i q̂=−m(i q̂ +m)2

− 1

3!

∂36θ

∂(i q̂)3
|i q̂=−m(i q̂ +m)3− 1

4!

∂46θ

∂(i q̂)4
|i q̂=−m(i q̂ +m)4

− 1

5!

∂56θ

∂(i q̂)5
|i q̂=−m(i q̂ +m)5 (6.5)

Since, one can write

(i q̂ +m)2 = (m+ i q̂)[2m] +m

[
−m

q2

m

]
,

(i q̂ +m)3 = (m+ i q̂)[−q2+ 3m2] +m[−2m2− 2q2],

(i q̂ +m)4 = (m+ i q̂)[4m3− 4mq2] +
[

(m2+ q2)2

m
− 4m(q2+m2)

]
,

(i q̂ +m)5 = (m+ i q̂)[(m2+ q2)2− 4m2(q2+m2)+ 2m(4m3− 4mq2)]

+m[(4m2− 4q2)(−q2−m2)] (6.6)

then a renormalization counterterm in6θ (p) has the general form

− (Zθ2 − 1
)

(i q̂ +m)+ Zθ2 ·m
as should expected. It turns out that the poles atd = 4 cancel in the definition of
(6.5). First, we separate the local value of (6.5):

6local(q) = −2e2π2

(2π )4

∫ 1

0
dx

{
2 · 1− x2

x
· (i q̂ +m)

+ [i q̂(1− x)+ 2m] ln

(
m2x2

q2x(1− x)+m2x

)}
(6.7)

Here there is still a divergence from the behavior of the first term asx→ 0, which
can be traced to the singular behavior of the integral over the photon momentump
in Eq. (6.3) atp2 = 0, when we takeq2 at the pointq2 = −m2, where we evaluated
Z2− 1. Such infrared divergences have common root as in the local QED.

To show explicit cancellation of poles at the limitd→ 4, we calculate whole
expression (6.5). Thus, terms proportional to−θ2(1− d)/2(2− d) are as follows.

1.
∂261

θ

∂(q̂)2
= q̂q2x(1− x)L · R

(
d

2
− 2

)
L

d
2−3

+ 2RL
d
2−2[2Lq̂ + 2q̂q2x(1− x)]
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+ 4q4x2(1− x)2L · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 2q2 · Lx(1− x) · D
(

d

2
− 2

)
L

d
2−3

+ 4q2x(1− x)D ·
(

d

2
− 2

)
L

d
2−3[2L + 2q2x(1− x)]

+ D · L d
2−2[2L + 10q2x(1− x)] (6.8)

where we have denotedL = q2x(1− x)+m2x, D = [−i (2− d)(1−
x)q̂ + d ·m] and R= −i (2− d)(1− x). Similar expressions hold for
other terms.

2. ∂361
θ

∂(q̂)3
= 12q4x2(1− x)2 · L · R

(
d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 6q2x(1− x)L · R
(

d

2
− 2

)
L

d
2−3 + 12q2x(1− x)R

(
d

2
− 2

)
+ L

d
2−3[2L + 2q2x(1− x)] + 3RL

d
2−2[2L + 10q2x)(1− x)]

× 10q̂x2(1− x)2 · q2L · D ·
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 24 · q̂q2x2(1− x)2 · L · D ·
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 6q̂2x(1− x)D ·
(

d

2
− 2

)
L

d
2−3 · [2L + 2q2x(1− x)]

+ 6q̂x(1− x)D ·
(

d

2
− 2

)
L

d
2−3 · [2L + 10q2x(1− x)]

+ 24q̂x(1− x)D · L d
2−2 (6.9)

For completeness, we write two more lengthy terms.

3. ∂461
θ

∂(q̂)4
= 96q̂ · q2x2(1− x)2 · L · R

(
d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 48q̂x(1− x)R ·
(

d

2
− 2

)
L

d
2−3 · [L + q2x(1− x)]

+ 24 · q̂x(1− x)R ·
(

d

2
− 2

)
L

d
2−3 · [2L + 10q2x(1− x)]

+ 46q̂q2x2(1− x)2L · R
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4
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+ 10q2Lx2(1− x)2 · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 92q2Lx2(1− x)2 · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 36q2Lx2(1− x)2 · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 12x(1− x) · D
(

d

2
− 2

)
L

d
2−3[2L + 10q2x(1− x)]

+ 192q2x2(1− x)2 · D
(

d

2
− 2

)
L

d
2−3

+ 96q̂x(1− x) · RL
d
2−2+ 24x(1− x)DL

d
2−2, (6.10)

and

4.
∂561

θ

∂(q̂)5
= 48q2x2(1− x)2 · 12 · R

(
d

2
− 2

)
L

d
2−3

+ 472q2x2(1− x)2 · L · R
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 56q2x2(1− x)2L · R
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 112q̂x2(1− x)2 · L · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 212q̂x2(1− x)2 · L · D
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 228q2x2(1− x)2 · L · R
(

d

2
− 2

)(
d

2
− 3

)
L

d
2−4

+ 120x(1− x)2 · R
(

d

2
− 2

)
L

d
2−3[L + 5q2x(1− x)]

+ 768q2x2(1− x)2 · R
(

d

2
− 2

)
L

d
2−3

+ 384q̂x2(1− x)2 · D
(

d

2
− 2

)
L

d
2−3

+ 336q̂x2(1− x)2 · D ·
(

d

2
− 2

)
L

d
2−3

+ 120x(1− x)R · L d
2−2 (6.11)
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We now write an explicit form of contributions arising from first two terms in
(6.5):

−6θ |i q̂=−m − ∂6θ
∂ i q̂
|i q̂=−m

= −e2π2

(2π )4
θ̃2
∫ 1

0
dx

{
[2i q̂(1− x)+ 4m][q4x(1− x)+ q2m2x] ln

1

L

+ 2m5x2(1− x) ln
1

m2x2
+ 2m4x2(1− x)(i q̂ +m) ln

1

m2x2

− 4m4x(1+ x)(2x − 1)(i q̂ +m) ln
1

m2x2
− (i q̂ +m)4m4x(1− x2)

+M [(2i q̂(1− x)+ 4m)(q4x(1− x)+ q2m2x)+ 2m5x2(1+ x)

+ 2m4x2(1− x)(i q̂ +m)− 4m4x(1+ x)(2x − 1)(i q̂ +m)]

}
(6.12)

where

θ̃2 = θ2(1− d)/2(2− d) and M = −ln m2x2+ 1

2− d/2
− γ (6.13)

Our main confirmation is that coefficients (6.8)–(6.12) at the singular value ofM
are exactly cancelled. These coefficients are defined as

K = K1+ K2+ K3+ K4+ K5 (6.14)

where K1, K2, K3, K4, and K5 are arisen from (6.12), (6.8), (6.9), (6.10), and
(6.11), with terms like (m2x2)

d
2−2, respectively. Thus

K1 = (2i q̂(1− x)+ 4m)(q4x(1− x)+ q2m2x)

+ 2m5x2(1+ x)+ 2m4x2(1− x)(i q̂ +m)

− 4m4x(1+ x)(2x − 1)(i q̂ +m),

K2 = [−4m3x(1− x)(2x − 1)+ 2m3x(1+ x)(6x − 5)]

× [2m(m+ i q̂)− q2−m2],

K3 = [2m2x(1− x)(x − 5(x − 1))+ 8m2x(1− x2)]

× [−2m3− 2mq2+ 3m2(m+ i q̂) = q2(m+ i q̂)],

K4 = [8mx(1− x)2− 2mx(1− x2)]

× [(m2+ q2)2− 4m2(m2+ q2)+ (m+ i q̂)(4m3− 4mq2)],
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and

K5 = [−2x(1− x)2][(m2+ q2)2(m+ i q̂)+ (m+ i q̂)4m2(−m2− q2)]

+(m+ i q̂)2m(4m3− 4mq2)+ (m2+ q2)(4m3− 4mq2)]

Now one can classify these terms as follows:

K = (m+ i q̂)[q4 · l1+m2q2 · l2+m4 · l3] + q4ml4+m3q2 · l5+m5 · l6
(6.15)

Here

l1 = 2x(1− x)2− 2x(1− x)2 ≡ 0,

l2 = 2x(1− x)+ 10(1− x)2x − 2x2(1− x)2

− 8x(1− x2)− 32x(1− x)2+ 8x(1− x2)

+ 8x(1− x)2− 16x(1− x)2− 4x(1− x)2 ≡ 0,

l3 = 2x2(1− x)− 4x2(1+ x)+ 4x(1− x2)+ 8x2(1− x)

+ 8x(1− x)2+ 4x2(1+ x)− 20x(1− x2)+ 6x2(1− x)

− 30x(1− x)2+ 24x(1− x2)+ 24x(1− x)2

− 8x(1− x2)− 2x(1− x)2 ≡ 0,

l4 = 4x(1− x)− 2x(1− x2)+ 8x(1− x)2− 2x(1− x2)− 8x(1− x)2 ≡ 0,

l5 = 4x − 2x(1− x)+ 4x2(1− x)− 4x(1− x)2

− 2x2(1+ x)+ 10x(1− x2)− 4x2(1− x)

+ 20x(1− x)2− 16x(1− x2)+ 4x(1− x2)− 16x(1− x)2 ≡ 0

and

l6 = 2x2(1+ x)+ 4x2(1− x)− 4x(1− x)2

− 2x2(1+ x)+ 10x(1− x2)− 4x2(1− x)+ 20x(1− x2)

− 16x(1− x2)− 24x(1− x)2+ 6x(1− x2)+ 8x(1− x)2 ≡ 0.

Thus, we see that as in the case of the vacuum polarization, the poles atd = 4 and
the term−γ in 0(2− d/2) cancel in6θ exactly. Multiplier (6.13) has arisen from
the product

0

(
2− d

2

)
(m2x2)

d
2−2→

(
1

2− d/2
− γ

)[
1−

(
2− d

2

)
ln m2x2

]
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= − ln m2x2+ 1

2− d/2
− γ = M

at the limit d→ 4. Other terms in (6.8)–(6.11) give the product0(2− d
2)(2−

d
2) · · · which is finite at this limit. After a straightforward but tedious calculation,
Eq. (6.5) becomes

6θ (q) = 6local(q)− 3e2π2θ2

4(2π )4

∫ 1

0
dx

{
[2i q̂(1− x)+ 4m][q4x(1− x)+ q2m2x]

× ln
m2x2

q2x(1− x)+m2x
+ (m+ i q̂)

[
10

3
m4(1− x)(−13+ 34x − 7x2)

+q2m2

(
4

3
(1− x)(95− 288x + 109x2)− 2

3
(1− x)2(16x − 11)

)
+ 2

15
q4(1− x)2(−98+ 293x)

]
+
(

m+ q2

m

)[
4m3(1− x)

(
569

60
+ 229

12
x + 84

15
x2

)
+ 2mq2(1− x)

(
−829

30
+ 143

6
x + 772

15
x2

)]}
(6.16)

where6local(q) is given by Eq. (6.7).
It should be noted that in expressions (6.8)–(6.11) there appear terms of the

type:

108· q̂q2x3(1− x)3 · L · D
(

d

2
− 2

)(
d

2
− 3

)(
d

2
− 4

)
L

d
2−5

that give divergence at the pointx = 0. These singularities are caused by the pole
of the valueL = q2x(1− x)+m2x at the pointq2 = −m2,

L(q2)|q2=−m2 = m2x2 (6.17)

Since, contributions61
θ (q) due to noncommutativity of spacetime are free from in-

frared divergences in the presence of the factor ((p · q)2− p2q2) in (6.3), and there-
fore we have omitted these fictitious divergences connected with a concrete form
of the Taylor series (6.5). Indeed, in some textbooks, for example, by Bogolubov
and Shirkov (1980) for removal of regularization (in our case,d-dimensional one),
it is used as an another form of the Taylor series

6(q)−6(0)− ∂6

∂qn
|q=0 · qn − · · · (6.18)
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instead of (6.5). Of course, in this case, Eq. (6.17) reads

L(q2)|q2=0 = m2x, (6.19)

and therefore, all expressions (6.8)–(6.11) are finite at the pointx = 0. However,
for this case we would obtain another expression6′θ (q), (instead of (6.16)):

6′θ (q) = 6θ (q)+ c1(m+ i q̂)+ c2m

wherec1 andc2 are some constants. In x-space last term acquires the form

[c1(m− ∂̂)+ c2m]∂4(x),

disappearing atx 6= 0, i.e., as should be expected from the general consideration,
in this term arbitrariness of the T-product (at the same time, the?-product) takes
place only at infinity small neighborhood of the pointx = 0.

Finally, we write explicit form of last two terms in (6.16) for the cases of
(6.18) and (6.19):

(m+ i q̂)[m4(−4x2(1− x2)+ 4i1+ 6i2+ 8i3+ 5i4)

+ 2q2m2(−i2− 4i3− 5i4)+ q4 · i4]

+m · 2(q2+m2)[m2(−i1− 2i2− 3i3− 2i4)+ q2(i3+ 2i4)] (6.20)

where

i1 = x(1− x)(5+ 7x − 2x2), i2 = 1

3
x(1− x)2(−28− 35x − 4x2),

i3 = x(1− x2)+ x(1− x)2

(
−41

4
− 23

2
x + 187

12
x2− 20

3
x3

)
,

and

i4 = x(1− x)2

15
(8+ 574x − 646x2+ 340x3− 48x4)

One can see that Eq. (6.16) with (6.20) is finite at the pointx = 0.

7. ANOMALOUS MAGNETIC MOMENTS AND
CHARGE RADII IN NQED

Let us consider contributions due to noncommutativity of spacetime to the
magnetic moment and the charge radius of an electron or muon in lowest order
radiative corrections. Here we need to calculate the matrix element corresponding
to the one-loop graph in Fig. 5.

By construction the?- product of this diagram

e−i px ? e−i (p−k)(x−z) ? e−(p′−p)z ? e−i (p′−k)(z−y) ? e−ik(y−x) ? eip′y
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Fig. 5. One-loop diagram for the photon–lepton vertex
function0µ in NQED.

gives rise to a factor in the momentum space:

U = exp

[
3

2
θσµvkµ pv − θσαβkα p′β + θσρσ pρ p′σ

]
= 1+U1 +U2 +U3 (7.1)

where

U1 = 3

2
θσµνk

µpν − θσαβkα p′β + θσρσ pρ p′σ (7.2)

U2 = −θ
2

2

[
− 9

4
σµνσχλk

µpνkχ pλ − σαβστγ kαkτ p′β p′γ

−σρσσθ1p′σ pθ p′1 + 3σµνσαβkµkα pν p′β

−3σµνσρσkµpν p′σ + 2σαβσρσkα p′β pρ p′σ (7.3)

and so on. Hereσµν = γµγν − γνγµ.
It is easy to see that the factor (7.1) in the limitq2= (p− p′)2→ 0 turns

to the form factor (6.2), that is corresponding or coordinating prescription of the
noncommutative theory. Making use of (2.6), one finds the trace of (7.1) with (7.3)
in the form:

F1 = 1

N(d)
TrU = 1− θ

2

2
[−9((k · p)2− k2 p2)− 4((p′ · k)2− k2 p′2

− 4((p · p′)2− p2 pr 2)+ 12((k · p′)(k · p)− (p · p′)k2)− 12((k · p′)p2

− (k · p)(p · p′))+ 8((k · p′)(p · p′)− (k · p)p′2)] (7.4)

For some cases, we need the trace of terms in (7.1) which are proportional toθ4:

F2 = F1+ θ
4

4
F3 (7.5)

where

F3 = 2

−θ2
TrU2

2

= 81

16
[(k · p)2− k2 p2]2+ [k · p′)2− k2 p′2]2+ [( p · p′)2− p2 p′2]2



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474207 November 12, 2003 0:45 Style file version May 30th, 2002

Noncommutative Field Theory 2643

− 4{−(k · p)[ p′2((p · p′)2− p2 p′2)] + (k · p′)[( p · p′)((p · p′)2− p2 p′2)]}
+ 2{(k · p′)2[( p · p′)2− p2 p′2] − k2[ p′2((p · p′)2− p2 pr 2)]}
− 18{(k · p)k2[2(p · p′)2− p2 p′2] + (k · p′)k2[−p2(p · p′)]
+ 2p2(k · p)(k · p′)2− 3(p · p′)(k · p′)(k · p)2+ p′2(k · p)3}
+ 6{−(k · p′)K 2 p2P′2+ (k · p)k2(p · p′)p′2− (k · p)(k · p′)2 · (p · p′)

+ p2(k · p′)3} + 27

2
{−p4(k · p′)k2+ k2 p2(k · p)(k · p′)

+ p2(k · p′) · (k · p′)2− (p · p′)(kp)3} − 9{p2 p′2(k · p)k2

− p2(p · p′)(k · p′)k2− p′2(kp)3+ (k · p′)(p · p′)(kp)2}
− 4{p′4(k · p)k2− p′2(p · p′)(k · p′)k2+ (p · p′)(k · p′)3

− p′2(k · p)(k · p′)2} + 12{p′2(p · p′)(k · p)k2− p2 p′2(k · p′)k2

−(p · p′)(k · p)(k · p′)2+ p2(k · p′)3} − 12{2(p · p′)p′2(kp)2

+ (k · p′)2(2(p · p′)p2)− (p2 p′2+ 3(p · p′)2)(kp)(k · p′)
+ k2[( p · p′)3− (p · p′)p2 p′2]}
9{k2 p2((p · p′)2− p2 p′2)+ (k · p)2(p2 p′2− (p · p′)2)+ 2p4(kp′)2

− 2p2(p · p′)(k · p)(k · p′)}
+4{k2 p′2((p · p′)2− p2 p′2)+ (k · p′)2((p · p′)2+ p2 p′2)+ 2p′4(kp)2

− 4p′2(p · p′)(k · p)(k · p′)}
+ 9{k4(2(p · p′)2− p2 p′2)− 4(p · p′)(k · p)(k · p′)k2+ p′2k2(kp)2

+ k2 p2(k · p′)2+ (k · p)2(k · p′)2}

+ 9

2
{p′p′2 · k4− p2k2(k · p′)2− p′2k2(k · p)2+ (k · p)2(k · p′)2}

+ 9

2
{p2((p · p′)2− p2 p′2) · k2} − 27

2
{p2k2(p · p′)− p2k2(k · p)(k · p′)

− k2(k · p)2(p · p′)+ (k · p′)(k · p)3}
− 6{[(k · p)(k · p′)− k2(p · p′)](( p · p′)2− p2 p′2)}
+6{[(k · p′)p2− (p · p′)(k · p)][( p · p′)2− p2 p′2]} (7.6)

Here, we have used expression of the type of (2.8) for the calculation of the trace
of multi-γµ-matrices.
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In NQED, one-loop graph (Fig. 5) gives the matrix element:

0
µ
θ (p′, p) =

∫
d4k[eγ ρ(2π )4]

[ −i

(2π )4

−i ( p̂′ − k̂)+m

(2π )4(p′ − k)2+m2− i ε

]

× [γ µ]

[
−i

(2π )4

−i ( p̂− k̂)+m

(p− k)2+m2− i ε

]
[eγρ(2π )4]

×
[ −i

(2π )2

1

k2− i ε

]
[1+ F1(θ , p′, p)] (7.7)

where p′ and p are the final and initial lepton four momenta, respectively. This
integral has ultraviolet divergence, here we do use the dimensional regularization
procedure.

To combine denominators, we use the Feynman parameterization prescription

1

(p′ − k)2+m2− i ε

1

(p− k)2+m2− i ε

1

k2− i ε

= 2
∫ 1

0
dx
∫ x

0
dy[(( p′ − k)2+m2− i ε)y+ ((p− k)2+m2− i ε)(x − y)

+ (k2− i ε)(1− x)]−3

= 2
∫ 1

0
dx
∫ x

0
dy[(k− p′y− p(x − y))2+m2x2+ q2y(x − y)− i ε]−3.

Hereq = p− p′ is the momentum transferred to the photon.
Shifting the variable of integration

k→ k+ p′y+ p(x − y) (7.8)

the integral (7.7) becomes

0
µ

0 (p′, p) = 2i e2

(2π )4

∫ 1

0
dx

∫ x

0
dy

∫
d4k[k2+m2x2+ q2y(x − y)− i ε]−3

×γ ρ [−i ( p̂′(1− y)− k̂− p̂(x − y))+m]γ µ (7.9)

[−i ( p̂′(1− x + y)− k̂− p̂y)+m]γρ [1+ Q(k, p, p′, x, y)]

where variable Q has arisen from Eq. (7.4) by using the shift (7.8):

Q = −θ
2

2

{−9[(k · p)2 − k2 p2] − 4[(k · p′)2 − k2 p′2] + 12[(k · p′)(k · p)

−k2(p · p′)] + 2(k · p)[2p′2 − 3(p · p′)](2x + y− 2)+ 2(k · p′)
× [3p2 − 2(p · p′)](2x + y− 2)+ (p2 p′2 − (p · p′)2)(y− 2+ 2x)2

}
(7.10)
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Next step is a Wick rotation, replace the volume elementd4kE = Ädkd−1dk and
use the formulas (5.6)–(5.12) and (5.13). Putting this all together, Eq. (7.9) now
becomes

0
µ
θ (p′, p) = −2e2Äd

(2π )4

∫ 1

0
dx
∫ x

0
dy
∫ ∞

0
kd−1 dk[k2+ L]−3

×
{

[ − k2γ ργ σ γ µγσ γρ/d] + γ ρ [−i
(
p̂′(1− y)− k̂− p̂(x − y)

)
+m]γ µ[−i ( p̂′(1− x + y)− k̂− p̂y)+m]γρ

− θ2

2
[ A+ B+ C + D][ Q1+ Q2+ Q3]

}
(7.11)

where we have used short notation

L = m2x2+ q2y(x − y),

A = γ ρ [−i ( p̂′(1− y)− p̂(x − y))+m]γ µ[−i ( p̂′(1− x + y)− p̂y)+m]γρ ,

B = −γ ρ k̂γ µk̂γρ ,

C = γ ρ [−i ( p̂′(1− y)− p̂(x − y))+m]γ µ(i k̂)γρ

D = γ ρ(i k̂)γ µ[−i ( p̂′(1− x + y)− p̂y)+m]γρ , (7.12)

and

Q1 = −9[(k · p)2− k2 p2] − 4[(k · p′)2− k2 p′2]

+ 12[(k · p′)(k · p)− k2(p · p′)]
Q2 = 2(k · p)[2p′2− 3(p · p′)](2x + y− 2)+ 2(k · p′)[3p2− 2(p · p′)]

× (2x + y− 2)

Q3 = (p2 p′2− (p · p′)2)(y− 2+ 2x)2 (7.13)

To carry out integration over the variablek, we need to calculate the following
type of expressions:

−γ ρ k̂γ µk̂γρ(k · p)2 = − k4

d(d + 2)
[ p2((2− d)2− 2(2− d))γ µ

+4(2− d)pµ p̂]|d→4 = −1

3
k4(p2γ µ − pµ p̂),

−γ ρ k̂γ µk̂γρ · k2 = − (2− d)2

d
k4γ µ|d→4 = −k4γ µ
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and

−γ ρ k̂γ µk̂γρ(k · p)(k · p′) = −k4
[
(p · p′)γ ργ βγ µγβγρ

+γ ρ p̂γ µ p̂′γρ + γ ρ p̂′γρ
]
/d(d + 2) (7.14)

and so on. Further, using theγ µ-algebra, one can transform last two terms in (7.14)
in the form:

1 = γ ρ p̂γ µ p̂′γρ + γ ρ p̂′γ µ p̂γρ

= (2− d)[2pµ p̂′ + 2p′µ p̂− 2(p · p′)γ µ]

After some calculations, we have

1) A · Q1 = A

(
1− 1

d

)
k2(3p− 2p′)2,

2) [ A+ B]Q3 = [ A+ B]( p2 p′2− (p · p′)2)(y− 2+ 2x)2

is almost local theory withθ2/2.

3) BQ1 = −k4

{
− (2− d)2− 2(2− d)

d(d + 2)
(3p− 2p′)2γ µ

+ (2− d)2

d
(3p− 2p′)2γ µ + 4(2− d)

d(d + 2)
[−9pµ p̂

− 4p′µ p̂′ + 6p̂µ p̂′ + 6p′µ p̂]

}
(7.15)

and

(C + D)Q2

= ik2

d
· 2(2x + y− 2)

{
γ ρ [−i ( p̂′(1− y)− p̂(x − y))+m]γ µ p̂γρ

+ γ ρ p̂γ µ[−i ( p̂(1− x + y)− p̂′y)+m]γρ
} · (2p′2− 3(p · p′))

+ ik2

d
· 2(2x + y− 2)

{
γ ρ [−i ( p̂′(1− y)− p̂(x − y))+m]γ µ p̂′γρ

+ γ ρ p̂′γ µ[−i ( p̂(1− x + y)− p̂′y)+m]γρ
} · (3p′2− 2(p · p′))

(7.16)

As in the local theory, we are interested here only in the matrix element
ū(p′)0µθ (p′, p)u(p) of the vertex function between Dirac spinors that satisfy the
relations

ū(p′)(i p̂′ +m) = 0, [i p̂+m]u(p) = 0
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We are able therefore to simplify this expression by using the anticommutation
relations of the Dirac matrices to move all factorsp′ to the left and all factorsp to
the right, replacing them when they arrive on the left or right withim. We take into
account the following standard relations between two Dirac spinorsū(p′) andu(p):

a1 = −(1− y)(1− x + y)γ ρ p̂′γ µ p̂γρ

= −2(1− y)(1− x + y)[−3m2γ µ − q2γ µ − 2im(p′µ + pµ)],

a2 = (x − y)(1− x + y)γ ρ p̂γ µ p̂γρ = (x − y)(1− x + y)[−4impµ − 2m2γ µ],

a3 = −im(1− x + y)γ ργ µ p̂γρ = −4im(1− x + y)pµ,

b1 = y(1− y)γ ρ p̂′γ µ p̂′γρ = y(1− y)[−4imp′µ − 2m2γ µ],

b2 = −y(x − y)γ ρ p̂γ µ p̂′γρ = −2m2y(x − y)γ µ

b3 = imγ ργ µ p̂γρ · y = 4imypµ

c1 = −im(1− y)γ ρ p̂′γ µγρ = −4im(1− y)p′µ

c2 = im(x − y)γ ρ p̂γ µγρ = 4im(x − y)pµ

c3 = m2γ ργ µγρ = −2m2γ µ

We sum up these expressions and obtain

A = 2m2γ µ(x2− 4x + 2)+ 2(1− y)(1− x + y)q2γ µ

+ 4im(y− x + xy)p′µ + 4im(x2− xy− y)p′ (7.17)

This is the result of the local theory case. To simplify expression due to
noncommutativity of spacetime, we have

d1 = −i (1− y)γ ρ p̂′γ µ p̂γρ = −2i (1− y)[−3m2γ µ − q2γ µ− 2im(p′µ + pµ)],

d2 = i (x − y)γ ρ p̂γρ = i (x − y)[−4impµ − 2m2γ µ],

d3 = mγ ργ µ p̂γρ = 4mpµ,

e1 = −i γ ρ p̂γ µ p̂γρ · (1− x + y) = − (1− x + y)[−4impµ − 2m2γ µ],

e2 = iyγ ρ p̂γ µ p̂′ = 2iym2γ µ,

e3 = mγ ρ p̂γ µγρ = 4mpµ,

D1 = −i (1− y)γ ρ p̂′γ µ p̂′γρ = −i (1− y)[−4imp′µ − 2m2γ µ],

D2 = i (x − y)γ ρ p̂γ µ p̂′γρ = i 2 · (x − y)m2γ µ,

D3 = mγ ργ µ p̂′γρ = 4mp′µ,

E1 = −i (1− x + y)γ ρ p̂′γ µ p̂γρ = −2i (1− x + y)[−3m2γ µ
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−q2γ µ − 2im( p̂′µ + pµ)],

E2 = iyγ ρ p̂′γ µ p̂′γρ = iy[−4imp̂′µ − 2m2γ µ],

and

E3 = mγ ρ p̂′γ µγρ = 4mp̂′µ

Last terms fromd1 to E3 are arisen from the expression which is proportional toθ2.
In the noncommutative quantum electrodynamics, the vertex function corre-

sponding to the diagram shown in Fig. 5 takes the form by means of short notation:

0
µ
θ (p′, p) = −2e2Äd

(2π )4

∫ 1

0
dx

∫ x

0
dy

∫ ∞
0

kd−1 dk

× [ A+ B+ C + D][k2+ L]−3

[
1− θ

2

2
(Q1+ Q2+ Q3)

]
(7.18)

Here,L, A, B, C, D, Q1, Q2, andQ3 are given by expressions (7.12) and (7.13).
According to above calculations,

3 = ū(p′)Au(p) = 2m2(x2− 4x + 2)γ µ

2(1− y)(1− x + y)q2γ µ − 2imx(1− x)[ pµ + p̂′µ],

ū(p′)Bu(p) = − (2− d)2

d
k2 · γ µ,

ū(p′)AQ1u(p) = k2

(
1− 1

d

)
(3q2− 7m2)3, (7.19)

ū(p′)(A+ B)Q3u(p) =
[
− (2− d)2

d
k2 · γ µ +3

]
(y− 2+ 2x)2

×
(
−m2q2− q4

4

)
|d→4

= (−k2γ µ +3)(y− 2+ 2x)2

(
−m2q2− q4

4

)
,

ū(p′)BQ1u(p) = −k4

[
2− d

d

4+ d − d2

d + 2
(3p− 2p′)γ µ

− i
m

2

4(2− d)

d(d + 2)
(pµ + p′µ)

]
|d→4

= −k4

[
2

3
(3q2− 7m2)γ µ + im

6
(pµ + p′µ)

]
(7.20)
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ū(p′)(C + D)Q3u(p) = 10i
m

d
k2q2(pµ + p′µ)(2x + y− 2)(2x − 1)

−2

d
k2 · γ µ(2x + y− 2)[4m2q2(5− 2x − y)+ q4(5− y− 2x)] (7.21)

Notice that in Eqs. (7.19)–(7.21) we have exploited the symmetry of the vertex
function (or the diagram) under the reflectionp→ p′ (or y→ x − y) that gives
the factorpµ + p′µ exactly.

We next use the integral formula (5.16), the Gamma-function algebra (5.6)–
(5.12), and the limiting procedure like (5.14) and (5.30) for removal of thed-
dimensional regularization as before.

According to the local theory there are other diagrams that need to be taken
into account. There is the zeroth-order termγ µ in 0µθ . The term proportional to
Z2− 1 in the contribution term (4.7) gives a term in0µθ :

0
µ

θL2 = (Z2− 1)γ µ (7.22)

Also, the effect of insertions of corrections to the external photon propagator is a
term:

0
µ

θ ,vac,pol(p′, p) = 1

(p′ − p)2−i ε
5
µν
θ (p′ − p)γν (7.23)

The form of each of these terms (7.18), (7.22), and (7.23) is in agreement with the
general rule:

ū(p′)0µ(p′, p)u(p) = ū(p′)
[
γ µFθ (q

2)− i

2m
(p+ p′)µGθ (q

2)

]
u(p) (7.24)

To ordere2, the form factors are

Fθ (q
2) = Z2+5θ (q

2)+ Flocal(q
2)+ F1θ (q

2) (7.25)

and

Gθ (q
2) = Glocal(q

2)+ G1θ (q
2) (7.26)

where5θ (q2) is the vacuum polarization function (5.33),

flocal(q
2) = −2π2 e2

(2π )4

∫ 1

0
dx
∫ x

0
dy

[
ln

m2x2+ q2y(x − y)

m2x2

+m2(x2− 4x + 2)+ q2(1− y)(1− x + y)

m2x2+ q2y(x − y)

]
(7.27)

Glocal(q
2) = −e2m2

4π2

∫ 1

0
dx
∫ x

0
dy

x(1− x)

m2x2+ q2y(x − y)
(7.28)

F1θ (q
2) = −θ

2

2

{
Flocal · (y− 2+ 2x)2

(
m2q2+ q4

4

)
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−4π2e2

(2π )4

∫ 1

0
dv
∫ x

0
dy

[
− ln

m2x2+ q2y(x − y)

m2x2(
α1m4+ α2m2q2+ q4

(
9

2
(1− x)+ 21

2
y(x − y)

+ 3

4
(y− 2+ 2x)(−4+ y+ 2x)

))
+m2q2y(x − y)

α1

x2

×
(

1− 1

2x2

q2

m2
y(x − y)

)
+ y(x − y)

x2
α2 · q4

]}
(7.29)

and

G1θ (q
2) = −θ

2

t

{
Glocal · (y− 2+ 2x)2

(
m2q2 + 1

4
q4

)
− 16π2 e2

(2π )4

∫ 1

0
dx
∫ x

0
dy

×
[
− ln

m2x2 + q2y(x − y)

m2x2
· (β1m4 + β2m2q2)+m2q2y(x − y)

β1

x2

×
(

1− 1

2x2

q2

m2
y(x − y)

)
+ y(x − y)

x2
β2 · q4

]}
(7.30)

Here

α1 = −7

2
(7x2− 6(2x − 1)),

α2 = −3

2
(1− x)(1+ 3x)+ 3

2
x(4x − 3)− 49

2
y(x − y)

+ 3(y− 2+ 2x)(−4+ 4+ 2x),

β1 = −(21x(1− x)+ x2),

β2 = 9x(1− x)− 5(2x − 1)(2x + y− 2)− y(x − y)

We see that Eq. (7.28) is finite. It makes to calculate the anomalous magnetic
moment. We know that it is onlyγ µ term that contributes to the magnetic moment,
so the effect of radiative and noncommutative corrections is to multiply the Dirac
valuee/2m of the magnetic moment by a factorFθ (0). But the definition ofe as
the true lepton charge requires that

Fθ (0)+ Gθ (0)= 1 (7.31)

so the magnetic moment may be expressed as

µθ = e

2m
(1− Gθ (0)) (7.32)
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From Eqs. (7.28) and (7.30), we find

−Gθ (0)= e

8π2
= 0.001161 (7.33)

This is the famousα/2π correction first obtained by Schwinger (1948). From
explicit forms (7.29) and (7.30) it follows that

F1θ (0)= G1θ (0)= 0 (7.34)

and therefore the charge-non-renormalization condition (7.31) and the magnetic
moment (7.32) do not change in the noncommutative quantum electro-dynamics,
at least up to the order ofθ2. However, by using the next Taylor series (7.6), one can
verify that correction due to the noncommutativity of spacetime to the anomalous
magnetic moment (7.33) turns to zero at least for fourth order inθ . This assertion
is valid for any order inθ , since in the limitq2 = (p− p′)2→ 0, the form factor
(7.1) goes to exp [i2θσµνk

µpν ], and therefore its trace is cos[θ
√

(k · p)2− k2 p2.
In this limiting case, the shift (7.8) becomes

k→ k+ p′y+ p(x − y)→ k+ px

which gives risek · p→ kp−m2x and k2 · p2→−m2k2− 2(k · p) ·m2x +
m4x2, so that (kp)2− k2 p2→ (k · p)2+m2k2. Therefore to ordere2, Eqs. (7.33)
and (7.31) do not change and remain as in the local theory, i.e.,F1θ (0)= G1θ (0)=
0 for any order inθ .

Of course, this assertion is valid only for the first radiative corrections ine2

to the magnetic moment. Even in just the next order, fourth order ine, there are so
many terms that the calculations become quite complicated. However, because of
the large muon–electron mass ratio, there is one fourth-order term in the magnetic
moment of the muon that is somewhat larger than any of the others. It arises from
the insertion of an electron loop in the virtual photon line of the second-order
diagram, as shown in Fig. 6.

The effect of this electron loop is to change the photon propagator 1/k2 in
Eq. (7.7) to (1+5e

θ (g
2))/k2, where5e

θ (q
2) is given by Eq. (5.33), but with the

Fig. 6. A two-loop diagram for the muon-magnetic moment in NQED.
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massm taken as the electron mass:

5e
θ (q

2) = e2

2π2

∫ 1

0
dx

{[
x(1−x)− θ

2

16

(
2m4

e+ 8m2
eq

2x(1− x)− 10x2(1−x)2q4
)]

× ln

(
1+ q2x(1− x)

m2
e

)
+ θ

2

16

(
2m2

eq
2x(1− x)− 9x2(1− x)2q4

)}
Inspection of Eq. (7.28) shows that in calculating the muon magnetic moment

the effective cutoff on the virtual photon momentumq is mµ. The ratiomµ/me is
so large that forq2 of orderm2

µ we may approximate

5e
θ (q

2) ' e2

2π2

∫ 1

0
dx

{
x(1− x) ln (mµ/me)

− θ
2

16

(
2m4

e+ 8m2
em2

µx(1− x)− 10x2(1− x)2m4
µ

)
ln
(
m2
µ/m2

e

)
− θ2

16

(
2m2

em2
µx(1− x)+ 9x2(1− x)2m4

µ

)}
(7.35)

with the neglected terms having coefficients of order unity in place of ln (m2
µ/m2

e).
Since this is a constant, the change in−Gθ (0) produced by adding an electron
loop in the virtual photon line is simply given by multiplying our previous result
(7.33) for−Gθ (0) by Eq. (7.35), so that now

µµ = e

2mµ

{
e2

8π2
+ e4

16π4

[
1

6
ln
(
m2
µ/m2

e

)− θ2

16

(
2m4

e−
4

3
m2

em2
µ −

1

3
m4
µ

)
× ln

(
m2
µ/m2

e

)− θ2

16

(
1

3
m2

em2
µ +

3

10
m4
µ

)]}
(7.36)

The present experimental values of the anomalous magnetic moment of muon
(Careyet al., 1999, Particle Data Group, 2002)

µµ = 1.00011659160± 6.10−10 (7.37)

are reliably confirmed by local quantum electrodynamics (Czarnecki and
Marciano, 2001; Hughes and Kinoshita, 1999; Kinoshita, 2001). It is natural to
suppose that the absolute value of the contributions calculated here should be of
an order or not greater than the experimental errors. This makes it possible to
establish the following restrictions on the parameterθ of the non-commutativity
of spacetime:

θ .7 · 10−32m2 (7.38)
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Now let us consider the other form factor (7.25). To satisfy the charge-non-
renormalization condition (7.31), it is necessary thatZ2 take the value

Z2 = 1+ e2

8π2
+ 2π2 e2

(2π )4

∫ 1

0
dx
∫ x

0
dy · x2− 4x + 2

x2
(7.39)

Inserting Eq. (7.39) back into Eq. (7.25) gives

Fθ (q
2) = 1+ e2

8π2
+5θ (q

2)+ 2π2e2

(2π )4

∫ 1

0
dx
∫ x

0
dy

×
{−m2[x2− 4x + 2]− q2(1− y)(1− x + y)

m2x2+ q2y(x − y)
+ x2− 4x + 2

x2

− ln

[
m2x2+ q2y(x − y)

m2x2

]}
+ F1θ (q

2) (7.40)

whereF1θ (q2) is given by Eq. (7.29). However, we see that the integral overx
and y now diverges logarithmically atx = 0 andy = 0, because there are two
powers ofx and/ory in the denominators, and just two differentialsdx dyin the
numerator. This divergence can be traced to the vanishing of the denominator
[k2+m2x2+ q2y(x − y)]−3 in Eq. (7.18) atx = 0, y = 0, andk = 0. As in the
local theory, because this infinity comes from the region of small rather than
largek, it is termed an infrared divergence rather than an ultraviolet divergence.
This divergence has arisen only from the local part of the noncommutative theory.
Further, we shall continue our calculation by simply introducing a fictitious photon
massµ to cut off the infrared divergence inFθ (q2).

As mentioned above, we know from the Ward identity thatFθ (0)= 1−
Gθ (0)= 1+ e2/8π2, so let us consider the first derivativeF ′θ (q

2) at q2 = 0. Ac-
cording to Eq. (7.40) withLµ = µ2(1− x)+ L = µ2(1− x)+m2x2+ q2y(x −
y), m2x2→ m2x2+ µ2(1− x) in its denominator, this is

F ′θ (0)= 5′θ (0)+ F ′local(0)+ F ′1θ (0) (7.41)

The vacuum polarization contribution is given by Eq. (5.33) as

5′θ (0)= e2

60π2m2
(7.42)

Then the term5′θ (0)+ F ′local(0) gives

5′θ (0)+ F ′local(0)= e2

24π2m2

[
ln

(
µ2

m2

)
+ 2

5
+ 1

4

]
(7.43)
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with the term 2/5 the correction of vacuum polarization. While the termF1θ (q2)
due to the noncommutativity of spacetime yields

F ′1θ (0)= −1

2
θ2m2

(
1+ e2

8π2

)
(7.44)

On the other hand, Eqs. (7.28) and (7.30) show thatGθ (q2) has a finite derivative
atq2 = 0

G′θ (q
2) = G′local(0)+ G′1θ (0)= e2

48π2m2
+ G′1θ (0) (7.45)

where

G′1θ (0) = −θ
2

2
m2

[
−e2m2

4π2

∫ 1

0
dx
∫ x

0
dy

x(1− x)

m2x2
(y− 2+ 2x)2

]
= e2

4π2

θ2

2
m2 · 31

36
(7.46)

These results are most conveniently expressed in terms of the charge form factor
fθ (q2), defined by the vertex function

µ̄(p′, σ ′)0µ(p′, p)(p, σ ) = µ̄(p′, σ ′)
[
γ µ fθ (q

2)+ i

2
i [γ µ, γ ν ]

× (p′ − p)ν f1θ (q
2)

]
u(p, σ ) (7.47)

where

fθ (q
2) = Fθ (q

2)+ Gθ (q
2) (7.48)

For |q2| ¿ m2, this form factor is approximately

fθ (q
2) ' 1+ e2

24π2

(
q2

m2

)[
ln

(
µ2

m2

)
+ 2

5
+ 3

4

]
− 1

2
θ2m2q2

(
1+ e2

8π2
− e2

4π2
· 31

36

)
(7.49)

This may be expressed in terms of a charge radiusaθ defined by the limiting
behavior of the charge form factor forq2→ 0:

fθ (q
2)→ 1− 1

6
q2a2

θ (7.50)

Thus, the charge radius of the electron in the noncommutative quantum electro-
dynamics takes the form

a2
θ = −

e2

4π2m2

[
ln

(
µ2

m2

)
+ 2

5
+ 3

4

]
+ 3θ2m2

(
1− e2

4π2
· 13

36

)
(7.51)
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We know that for electrons in atoms the role of the photon massµ is played by an
effective infrared cutoff that is much less thanm, so the logarithm here is large and
negative, yielding a positive value fora2

θ . Last term in (7.51) is small contribution
with respect to first one.

8. THE CAUSALITY CONDITION AND UNITARITY
OF THE S?-MATRIX IN NONCOMMUTATIVE QUANTUM
FIELD THEORY (NQFD)

The principles of causality and unitarity of theS-matrix in QFT are the
basis of all approaches in the elementary particle theory which make claims to
self-consistency and physical acceptability. Therefore, the proof of the unitarity
and causality condition is crucial in constructing various models of QFT. These
problems were considered in detail by Bogolubov and Shirkov (1980) and Efimov
(1977), (see also Namsrai, 1986) in both the local and nonlocal cases, respectively.
In this section we study spacetime properties of some functions, and the causality
condition and unitarity of theS?-matrix in NQFT.

8.1. Space-Time Properties of Some Functions
in the Noncommutative Space-Time

To study spacetime properties of theS?-matrix in NQFT, it is necessary to
consider the local properties of test functions and generalized functions in non-
commutative spacetime.

Definition 8.1. Any smooth and generalized functionsf (x) can be defined in
noncommutative spacetime by means of the?-product:

fθ (x) = f 1/2(x) ? f 1/2(x) = e
1
2 ln f (x) ? e

1
2 ln f (x) (8.1)

and its the covariant?-product reads

fθ (x) = cos hθ
√(
∂x
ρ · ∂ρy

)2− hxhy f 1/2(x) f 1/2(y)|y=x (8.2)

Differential and integral calculuses can be also formulated as the usual case (for
detail, see Section 9):∫

d4x ? f (x) =
∫

d4x
[
3xy f 1/2(x) f 1/2(y)|y=x

]
(8.3)

and

∂

∂xν
? f (x) = ∂

∂xν
[
3xy f 1/2(x) f 1/2(y)|y=x

]
(8.4)
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where we have used the short notation

3xy = cos hθ
√(
∂x
ρ · ∂ρy

)2− hxhy (8.5)

In this case, the variational differential defines as

δ

δ f (y)
f 2
? (x) = δ

δ f (y)
[ f (x)(?)c f (x)] = 23xyδ

4(x − y) f (y)|y=x

or

δ

δ f (y)
(?)c f (x) = 3xyδ

4(x − y) (8.6)

However

3xyδ
4(x − y) = δ4(x − y)

and therefore

δ

δ f (y)
(?)c f (x) = δ

δ f (y)
f (x) = δ4(x − y) (8.7)

Moreover, there exist obvious equalities:∫
d4y f (y)(?)cδ

4(x − y) = f (x)∫
d4zδ4(x − z)(?)cδ

4(z− y) = δ4(x − y) (8.8)

As an example, consider a function of the finite support in spacetime, say the
well-known discontinuous functionθ (l 2− x2

E), wherex2
E = x2

0 + x2. This func-
tion is located inside the four spheres defined byx2

E = l 2 or in the hyperboloid:
x2 = l 2, x2 = −x2

0 + x2. By the definition of the?-product, in noncommutative
spacetime form of this function is changed

θ (l 2− x2)→ θθ (l
2− x2) = 1

2π i

∫ ∞
−∞

dτ
ei τ l 2

τ − i ε
e−

i τx2

2 ? e−
i τx2

2 (8.9)

Here we will use the covariant?-product (2.12). Then, result reads

Iθ (x
2) = e−

i τx2

2 (?)c e−
i τx2

2 = 3xy e−
x2

21 e−
y2

21 |y=x

(1 = 1/ i τ ) (8.10)

After some direct calculations, one gets

hxhy e−
x2

1 e−
y2

1 = λ1(x, y) e−
x2

1 e−
y2

1 (8.11)(
∂µx ∂

y
µ

)
e−

x2

1 e−
y2

1 = λ2(x, y) e−
x2

1 e−
y2

1 (8.12)
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where

λ1(x, y) = 16

14
x2y2− 32

13
(x2+ y2)+ 64

12
(8.13)

and

λ2(x, y) = 16

14
(x · y)2− 8

13
(x2+ y2)+ 16

12
(8.14)

By using these equalities, one can calculate higher order of differentials in
(8.10). For example,

hxhyhxhy e−
x2

1 e−
y2

1 |y=x = λ3(x, y) e−
x2

1 e−
y2

1 |y=x (8.15)(
∂ρx ∂

y
ρ

)2
hxhy e−

x2

1
− y2

1 |y=x = hxhy
(
∂ρx ∂

y
ρ

)2
e−

x2

1
− y2

1 |y=x

= λ4(x, y) e−
x2

1 e−
y2

1 |y=x (8.16)(
∂ρx ∂

y
ρ

)2 (
∂χx ∂

y
χ

)2
e−

x2

1
− y2

1 |y=x = λ5(x, y) e−
x2

1
− y2

1 |y=x

Here coefficientsλ3(x, y) andλ4(x, y) are given by

λ3(x, y)|y=x = λ3(x, x) = 6 · 128· 12 ·1−4− 128· 36 · 4 ·1−5 · x2

+ 128· 12 · 8 ·1−6(x2)2− 6 · 5121−7(x2)3+ 2561−8(x2)4,

(8.17)
λ4(x, y)|y=x = λ4(x, x) = 2304·1−4− 46081−5x2

+ 61441−6x4− 23041−7x6+ 2561−8x8,

λ5(x, y)|y=x = λ5(x, x) = 1152·1−4− 2304·1−5 · x2

+ 3840·1−6(x2)2− 1536·1−7(x2)3+ 2561−8(x2)4 (8.18)

Substituting expressions (8.11), (8.12), (8.15), and (8.16) into (8.10), one gets

Iθ (x
2) =

[
1+ 3

4
θ2 ·1−1.hx + 5

32
θ4 ·1−2 · h2

x + · · ·
]

e−
x2

1 (8.19)

where we have used the identities

hx e−
x2

1 = 8
1

1

(
x2

21
− 1

)
e−

x2

1 (8.20)

and

h
2
x e−

x2

1 = 64

12

[(
x2

21
− 1

)2

−
(

x2

21
− 1

)
− 1

2

]
e−

x2

1 (8.21)
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According to Eq. (8.19) expression (8.9) acquires the form

θθ
(
l 2− x2

) = [1+ 3

4
θ2

h
d

dx2
+ 5

32
θ4

h
2 d2

d(x2)2
+ · · ·

]
θ
(
l 2− x2

)
(8.22)

where

d

dx2
θ
(
l 2− x2

) = −δ (l 2− x2
)

Thus, we see that Eq. (8.22) is a generalized function with finite support. Further,
making use of a formal link

1

1
= 1

x2

(
1+ 1

2

√
4+ x2h

)
between the parameter1 and the D’Alembertian operatorh, arisen from Eq. (8.20)
one can write expression (8.22) in an another compact form

θθ
(
l 2− x2

) = K (θh)θ
(
l 2− x2

)
(8.23)

where

K (θh) = 1+ 3

4
θ2

h

[
1

x2

(
1+ 1

2

√
4+ x2h

)]
+ 5

32
θ4

h
2

[
1

x2

(
1+ 1

2

√
4+ x2h

)]
+ · · · (8.24)

Similarly, the Diracδ-function in noncommutative spacetime is also changed

δ4(x)⇒ δ4
θ (x) = lim

1→0

[(√
1/1π

)4
e−

x2

21 ? e−
x2

21

]
= K (θh)δ4(x) (8.25)

Owing to above formulas in noncommutative spacetime the wave packet located
at the origin takes the form

W(x,1) =
(√

1/1π
)4

e−
x2
0+x2

1 ⇒ Wθ (x,1) =
(√

1/1π
)4

e−
x2

21 ? e−
x2

21

(8.26)

Here evolution of the wave packet may be understood by means of the proper time
formulism(s) instead of the usual time variable (x0 = t). The covariant?-product
of this expression is

Wθ (x,1) = ϕθW(x,1) (8.27)

where

ϕθ (x) = 1+ 6
θ2

12
P1+ 10

θ4

14
P2+ · · · (8.28)
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Here

P1 = x2
E

21
− 1, P2 = P2

1 − P1− 1

2
(8.29)

We see thatϕθ (x) is a polynomial.
Consider yet one quantity of interest. This is metric or distance of two events

in noncommutative spacetime:

x2
θ =
√

x2(?)c

√
x2 = cos hθ

√(
∂x
µ · ∂µy

)2− hxhy ·
√

x2
√

y2|y=x

= x2

[
1− 6

2
· θ

2

x4
+ 100

24
· θ

4

x8
− · · ·

]
(8.30)

This metric tends to the usual one,x2 = −x2
0 + x2 at long distances.

Finally, notice that the plan wave exp(iωt − i px) = ϕ(x) possesses remark-
able properties. It does not alter its form in noncommuatative spacetime:

ϕθ (x) = eipx/2(?)c eipx/2 = 3xy eipx/2 · eipy/2|y=x = eipx (8.31)

Commutation relations (1.1) allow us to link the dimensionful parameterθ

with the Heisenberg uncertainty relations1x ·1p ∼ h. Indeed, from Eq. (8.27)
it follows

1= 1+ 6
θ2

(1x)2
P1+ 10

θ4

(1x)4
P2+ · · · (8.32)

at the limit x→ 0. Here we have changed1→ 1x,
√
1x is the width of the

wave packet and functionsP1 and P2 are given by Eq. (8.29), whereP1(0)=
−1, P2(0)= 3

2.
Thus, Eq. (8.32) gives

θ =
√

6

15
·1x (8.33)

at least up toθ6-th order inθ , and therefore

1.25
√
θ ·1 p ∼ h (8.34)

This is quantum mechanical physical meaning of the parameterθ for non-
commutative spacetime. In this case, the metricx2

θ (8.30) is oscillated at small
distances, but it is possible that the metric becomes infinite at the origin due to the
uncertainty relation (8.34).

8.2. The Class of Test Functions and Generalized Functions in NQFD

We know that initial objects of the local QFT are singular functions:

the causal Green function1c(x) (8.35)
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or the propagator of the particle with massm.

the positive-frequency part1+(x) (8.36)

of the Pauli-Jordan function1(x − y) = [ϕ(x), ϕ(y)]−, whereϕ(x) is the field op-
erator. These functions have a higher singularity of the type ofδ(λ), θ (λ), λ−1/2

on the light coneλ = −x2
0 + x2 = 0, and are studied by means of countable nor-

malized spaces (spaces of test functions):

(1) Space D(G). Let G be the finite region, i.e., the bounded open set in the
n-dimensional real spaceRn. Denote D(G), the set of infinitely smooth
functions (i.e., functions having continuous partial derivatives of all or-
ders) inRn, tending to zero outside the region G. Define in D(G) the
countable system normqσ by the formula (u(x) ∈ D(G)):

q0(u) = p00(u) = sup
x
|u(x)|, . . . , qσ (u) = poσ = max

|α|≤σ
sup

x
|Dαu(x)|,

(8.37)

where

Dβ = ∂β1 + · · · + βn

∂xβ1
1 . . . ∂xβn

n

, |α| = α1+ · · · + αn, xα = xα1
1 xα2

2 . . . xαn
n

(8.38)

(2) Space S [or S(Rn)] consists of all infinitely smooth functions in then-
dimensional real spaceRn, which decrease rapidly any polynomials of
(x2

1 + x2
2 + · · · + x2

n)−1/2 together with all partial derivatives at||x|| →
∞, i.e., S= S(Rn) = C(∞,∞, Rn). For these functions all the norms.

pρσ = · max
|α|≤ρ ,|β|≤σ

sup
x∈Rn
|xαDβu(x)| (8.39)

take finite values. Here the space C (σ, ρ , n) consists of complex-valued
functions ofn-real variablesx = x1, . . . , xn, having continuous partial
derivatives up to the orderσ inclusively, and decreasing no more slowly
than|x|−ρ together with all derivatives at infinity. In other words, for the
functions u(x) ∈ C(σ, ρ , n) all the products of the type

xαDβu(x) |α| ≤ ρ , |β| ≤ σ (8.40)

are bounded. The norm in the space C(σ, ρ , n) is given by (8.39). We will
define the convergence in S by the countable system norms

pσ (u) = pσσ (u) = max
|α|≤σ,|β|≤σ

sup
x∈Rn
|xαDβu(x)|, σ = 0, 1, 2,. . .

(8.41)
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In particular, Hermit–Chebyshev functions, and in general, all functions of
the type

P(x1, x2, . . . , xn) exp
(−x2

1/a
2
1 − · · · − x2

n/a
2
n

)
(8.42)

may be used as functions of S-space, where P (·) is an arbitrary polynomial.

Definition 8.2. A generalized function is called any linear continuous functional
over the countably normalized space S defined above, i.e., any element of space
S′. Space S′ consists of all functional of the type

F(u) =
∫
Rn

dnx f (x)Dαu(x) (8.43)

whereDα is given by formula (8.38), andf (x) is a continuous function of the
polynomial growth. The function of space S are called test functions. The concept
of the generalized functions depends on the choice of the initial (linear topological)
space of the test functions. For example, instead of S we would take D(G) as a
base of test space. Schwartz (1957, 1959) defined the generalized functions as the
continuous functionals on space D of all finite and infinite differentiable functions
(D is the union of the space D (G), when the region G is changed).

Definition 8.3. Functions disappearing outside some finite region of space are
called finite functions. Closure of points set on which a continuous functionu(x) 6=
0 is called the support of this function.

From (8.27) and (8.28) it follows that with respect to the test functions of gen-
eralized functions, spacetime noncommutativity plays a role of multiplierϕθ (x). It
is said that functionϕθ (x) is multiplier in space S for test functions if fromu(x) ∈
S it follows thatϕθ (x) u(x) ∈ S. The space of all multipliers arase from spacetime
noncommutativity we denoteÄθ . It is clear that ifϕ(x) is infinitely differentiable
and a polynomially bounded function of x (together with all its derivatives), then
ϕ(x) is the multiplier in S. The functional series (8.28) satisfies this condition.

In the local QFT concept of locality and microcausality condition is connected
with a definition of the local properties of the test and generalized functions, and
requires among them the existence of functions with bounded support. Usually, as
such functions one can consider the functions of D-space of infinite-differentiable
functions with bounded supports. By means of these functions the spacetime
properties of the functional are investigated, for example, the commutator of
Heisenberg’s fieldϕ(x):

[ϕ(x), ϕ(y)]− =? (8.44)
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or the causality condition for theS-matrix in the Bogolubov form

δ

δg(x)

(
δS

δg(y)
S+
)
= 0 (8.45)

for x. y.
However, in spacetime noncommutativity there appear nonlocal distributions

(or generalized functions) of the type of (8.23) and (8.25). Study of such singular
functions is needed in introduction of a new class of test functions named entire
functions of the finite order of growthα. The space of these functions is denoted
Zα (Efimov, 1977).

For any f (z1, . . . , zn) ∈ Zα there exist such positive numbersC > 0 and
Aj > 0 ( j = 1, . . . , n) that

| f (z1, . . . , zn)| ≤ C exp

[
n∑

j=1

Aj |zj |α
]

(8.46)

and for anyy1, . . . , yn∫
d4x1 . . .

∫
d4xn | f (x1+ iy1, . . . , xn + iyn)| < ∞ (8.47)

The numberα is chosen depending on the interaction Lagrangian under consider-
ation and the way of introducing nonlocality into the theory.

As seen below, for study of theS?-matrix in NQFD constructed by using
the covariant (?)c-product it is sufficient to use D-space of infinite differentiable
functions of the type of (8.42) in accordance with the particular example (8.19).

8.3. Structural Peculiarity of the S?-Matrix in NQFT

As seen above, theS?-matrix in NQFT is constructed as in the local theory
by means ofT?-product of field operators:

S? = T? exp{i
∫

d4x, L?in(x)} (8.48)

where the interaction Lagrangian is formed by using the?-product, for example

L?NQED = i eψ̄(x) ? γ µψ(x) ? Aµ(x) (8.49)

and

L?φ3 = g

3!
ϕ(x) ? ϕ(x) ? ϕ(x) (8.50)

and so on.

Theorem 1. The Wick theorem is valid for the NQFT with the covariant (?)c-
product.
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The proof is trivial. Indeed, as first step one gets

(1). 〈0|T [ϕ(x)(?)cϕ(y)]|0〉 = 3xy〈0|T [ϕ(x)ϕ(y)]|0〉
= 3xy1(x − y) = 1(x − y) (8.51)

(2). As second step, let us consider simple expression:

I123= 〈0|T{: ϕ(x1) : (?)c : ϕ(x2) : (?)c : ϕ(x3) :}|0〉
= 〈0|T{312313 : ϕ(x1) :: ϕ(x2) :: ϕ(x3) :

+313332 : ϕ(x1) :: ϕ(x3) :: ϕ(x2) :

+321313 : ϕ(x2) :: ϕ(x1) :: ϕ(x3) :

+323331 : ϕ(x2) :: ϕ(x3) :: ϕ(x1) :

+331313 : ϕ(x3) :: ϕ(x1) :: ϕ(x3) :

+332321 : ϕ(x3) :: ϕ(x2) :: ϕ(x1) :}|0〉 (8.52)

where we have used the short notation:

312 cos hθ
√(
∂

x1
ρ · ∂ρx2

)2− hx1hx2,

and

ϕ1 = ϕ(x1) and etc.

ExposingT-product in (8.52) we have

I123= 2(312313+313332+321313)[112 : ϕ3

+113 : ϕ2 : +123 : ϕ1 :] (8.53)

whereδ12 = 1(x1− x2) is the Green function of theϕ(x) field. Carry out some
simple calculations in (8.53) and obtain

I123= 2{312323112 : ϕ3 : +313332112 : ϕ3 : +321313112 : ϕ3 :

+312323113 : ϕ2 : +313332113 : ϕ2 : +321313113 : ϕ2 :

+312323123 : ϕ1 : +313332123 : ϕ1 : +321313123 : ϕ1 :}
Further, use the identity312112 = 112 . . . , arisen from (8.51) and obvi-

ous equality312332 : ϕ3 : 112 = 312112 : ϕ3 :,312323 : ϕ2 : 113 = 313113 :
ϕ2: and etc., and go back to the?-product, we obtain the almost local expres-
sion

I123= 6{112? : ϕ3 : +113? : ϕ2 : +123? : ϕ1 :} (8.54)

with only difference in the verex points with the?-product (Fig. 7).
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Fig. 7. The Simpler Feynman diagram arisen fromT∗-product in NQFT.

Now we consider yet oneT?-product for theφ3-theory.

I3 = 〈0|T{: ϕ1 ? ϕ1 ? ϕ1 :: ϕ2 ? ϕ2 ? ϕ2 :: ϕ3 ? ϕ3 ? ϕ3}|0〉
=

∏
permutations
of y,···,y,

{3y1y23y2y33y3y43y4y53y5y63y6y73y7y83y8y9}

×〈0|T{: ϕ(y1)ϕ(y2)ϕ(y3) : |y1=y2=y3=x1 : ϕ(y4)ϕ(y5)ϕ(y6) : |y4=y5=y6=x2

× : ϕ(y7)ϕ(y8)ϕ(y9) : |y7=y8=y9=x3}|0〉 (8.55)

One of terms with the following chronological pairing

: ϕ

︷ ︸︸ ︷
(y1)ϕ (y2)ϕ(y3) :: ϕ︸ ︷︷ ︸(y4)

︷ ︸︸ ︷
ϕ(y5)ϕ(y6) :: ϕ(Y7)ϕ(y8)ϕ(y9) :

gives the matrix element (Fig. 8)

I 1
3 =: ϕx1 : ?1(x1− x2)? : ϕx2 : ?1(x2− x3)? : ϕx3 : ?1(x3− x1) (8.56)

after going back to the star-product.
In the momentum space matrix element corresponding to the diagram shown

in Fig. 8. gives the?-product of the type:

e−i px1 ? e−i (p−k)(x1−x3) ? e−i (p′−p)x3 × e−i (p′−k)(x3−x2) ? e−ik(x2−x1) ? eip′x2 (8.57)

as it will be expected (see Eq. (7.1)).
Thus, theS?-matrix elements in the noncommutative quantum field theory

are constructed by a similar way as in the usual local theory with using the star
product.

Fig. 8. One of the diagrams in the noncommutativeφ3-theory.
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8.4. The Proof of Unitarity and Causality of the S?-Matrix

8.4.1. The Causality Condition in the Functional Form

We now verify the condition (8.45) for theS?-matrix, which is constructed
by means of the?-product of the interaction LagrangianL?in(x) in the case of the
NQFT. As usual, theS?-matrix is presented as a functional series over the powers
of the coupling constantg(x), made into a function of spacetime:

S?[g] = 1+
∞∑

n=1

i n

n!

∫
d4x1 . . .

∫
d4xnS?n(x1, . . . , xn)g(x1) ? · · · ? g(xn) (8.58)

or in the convenient form

S?[g] = T? exp

{
i
∫

d4xL?in(x) ? g(x)

}
(8.59)

To check condition (8.45), we calculate the variational differentil ofS?[g] at the
point y

−i
δ

δg(y)
(?)cS?[g] = T?

{
L?in(y)(?)c exp

[
i
∫

d4xL?in(x)(?)cg(x)

]}
taking into account hereδg(x) ? /δg(y) = δ4(x − y) in accordance with the for-
mula (8.7).

Further, the four-dimensional spaceR4 is divided into two partsG+ andG−
by the space-like surfacex0 = const= y0 with respect to whichG+ lies to “the
future” andG− to “the past.” Thus, we have

−i
δ

δg(y)
(?)cS?[g] = T?

{
L?in(y)(?)c exp

[
i
∫

G+
d4xL?in(x)(?)cg(x)

]
× (?)c exp

[
i
∫

G−
d4zL?in(z)(?)cg(z)

]}
= T?

{
L?in(y)(?)c exp

[
i
∫

G+
d4xL?in(x)(?)cg(x)

]}
× (?)cT?

{
exp

[
i
∫

G−
d4zL?in(z)(?)cg(x)

]}
(8.60)

On the other hand, we reach by analogy

S?[g] = T?

{
exp

[
i
∫

G+
d4xL?in(x)(?)cg(x)+ i

∫
G−

d4zL?in(z)(?)cg(z)

]}
= T?

{
exp

[
i
∫

G+
d4xL?in(x)(?)cg(x)

]}
T?

{
exp

[
i
∫

G−
d4zL?in(z) ? g(z)

]}
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and also

S+? [g] =
{

T? exp

[
i
∫

G−
d4xL?in(x)(?)cg(x)

]}+
×
{

T? exp

[
i
∫

G+
d4zL?in(z)(?)cg(z)

]}+
From this, taking into account the unitarity property for

T?

{
exp

[
i
∫

G−
d4xL?in(x)(?)cg(z)

]}
and making use of (8.60), we get

−i
δ

δg(y)
(?)cS+? [g] = T?

{
L?in(y)(?)c exp

[
i
∫

G−
d4zL?in(z)(?)cg(z)

]}

×
{

T? exp

[
i
∫

G+
d4zL?in(z)(?)cg(z)

]}+
Therefore, the product [

δ

δg(y)
(?)cS?[g]

]
S+? [g]

does not depend on the behavior of the functiong(x) in the regionG−, i.e., for
x0 < y0. In accordance with the covariant principle of the relativistic NQFT with
using the covariant (?)c-product it takes place also in the case whenx ∼ y (space-
like separation). We recall that in this region (x ∼ y) the commutator of the co-
variant (?)c-product field operatorϕ(x) (in particular for the scalar theory):

[ϕ(x), (?)cϕ(y)]− = 1(x − y)

disappears, which ensures the independence of events separated by space-like inter-
vals, i.e., the causality condition in noncommutative spacetime with the covariant
(?)c-product.

All above statements are based on the formal functional method. However,
there exists the perturbation theory approach (or the diagrammar approach) to
investigate unitarity and causality conditions in each order of the perturbation
series (for example, see ’t Hooft and Veltman, 1973).

8.4.2. Diagrammar Approach to the Study of Causality and
Unitarity Conditions in NQFT

As seen above, structural aspects of Feynman diagrams in NQFT are very
similar to ones in the local QFT with only difference in those vertices, and
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therefore one can study causality and unitarity conditions by means of diagram-
mers. Sketches of study of such problem are divided into several steps:

8.4.2.1. The Kalĺen–Lehmann Representation.

f (−s) =
∫ ∞

a≥0

ρ(s′)
s′ − s− i ε

ds′ (8.61)

is valid for any propagator, for instance, for vector mesons

i (2π )41̃µν(k) = δµν f1(k2)+ kµkν f2(k2) (8.62)

In (8.61) the functionsρ(s′) must be real. The statement that any function1(x)
satisfies the Kall´en–Lehmann representation is equivalent to the statement

1(x) = θ (x0)1+(x)+ θ (−x0)1−(x) (8.63)

where1+(1−) is a positive (negative) energy function

1±(x) = 1

(2π )3

∫ ∞
a≥0

ds′ ρ(s′)
∫

d4k eikxθ (±k0)δ(k2+ s′) (8.64)

From this equation it follows thatδ+(x0) = 1−(−x0), so in any case1+(0)=
1−(0). This is enough to treat the case of one derivative such as occurring in the
case of fermion propagators. It is obvious that∂01

+ = ∂01
− in x0 = 0 only if the

dispersion integral is supercovergent∫
ds′ ρ(s′) = 0 (8.65)

Let us now assume that the superconvergence Eq. (8.65) holds. Then one gets

∂µ∂ν [θ (x0)1+(x)+ θ (−x0)1−(x)] = θ (x0)∂µ∂ν1
+(x)+ θ (−x0)∂µ∂ν1

−(x)

(8.66)

using

∂(x0)∂01
+(x)− δ(x0)∂01

−(x) = 0,

as well as

δ′(x0)1+(x)− δ′(x0)1−(x) = 0.

Equation (8.66) is crucial for the proof of unitarity and causality inS?-matrix
theory in accordance with the formula (8.51).

8.4.2.2. Unitary Regulators.Since Green functions (8.51) in NQFT as well as
in the local QFT are divergent, it is needed to introduce so-called unitarity
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regulators, say

1̃(k)→ 1̃δ(k) = 1

(2π )4i

(1/δ)2

(k2+m2)(k2+m2+ δ−2)
(8.67)

Such type of the regulator method works for any theory in the sense that it allows
a proper definition of all diagrams and is moreover very suitable in the connection
with the proof of unitarity and causality. However, it fails in the case of Lagrangians
invariant under a gauge group, for which it will introduce a more sophisticated
method.

8.4.2.3. Method of Cutting Equations.It is supposed that diagrams are sufficiently
regularized (say, the intermediate regularization likeδ (8.67)), so that no diver-
gencies occur. The propagator of a particle is divided into positive and negative
energy (frequency) parts

1i j (x) = θ (x0)1+i j (x)+ θ (−x0)1−i j (x) (8.68)

1±i j (x) = (2π )−3
∫

d4k eikxθ (±k0)ρ(k2) (8.69)

with x = xi − xj , and1i j (x) = 1Fi j (xi − xj ). Owing to the reality of the spectral
functionsρ in (8.61), we have1±i j = (1∓i j )

∗, also1±i j = (1∓j i ), and therefore

1∗i j = θ (xi − xj )1
−
i j + θ (xj − xi )1

+
i j (8.70a)

As before

θ (x) = 1

2π i

∫ ∞
−∞

dτ
ei τx

τ − i ε
=
{

1 if x0 > 0
0 if x0 < 0

(8.70b)

and

θ (x)+ θ (−x) = 1. (8.70)

Let us consider a diagram withn vertices. As in the local theory such a
diagram represents in coordinate space an expression containing many propagators
depending on argumentsx1, . . . , xn. We will denote such an expression by

F?
θ (x1, . . . , xn). (8.71)

For example, the triangle diagram represents the function (Fig. 9):

F?
θ (x1, x2, x3) = (ig)3 ? 131 ? 123 ? 112? (8.72)

Fig. 9.
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Every diagram, when multiplied by the appropriate plane waves (or source func-
tions) with the?-product and integrated over allx, contributes to theS?-matrix.
The contribution to theS?-matrix, defined by

S? = 1+ iT? (8.73)

is obtained by multiplying by a factor−i . Unitarity of theS?-matrix implies an
equation for the imaginary part of the so-definedT? matrix

T? − T+? = iT+? ? T? (8.74)

TheT?-matrix, or rather the diagrams, are also constrained by the requirement of
causality. Causality is formulated by using proposal involving the off-mass-shell
Green’s functions1c

θ (x) = 1c(x). The causality requirment is most suitable in
connection with a diagrammatic analysis. In the language of diagrams Bogolubov’s
causality condition can be put as follows: if a spacetime pointx1 is in the future
with respect to some other space-time pointx2, then the diagrams involvingx1 and
x2 can be rewritten in terms of functions that involve positive energy flow fromx2

to x1 only.
The difficulty of this defintions is connected with the fact that space-time

points cannot be accurately pinpointed with relativistic wave packets correspond-
ing to particles on mass-shell. Therefore, this definition cannot be formulated as
an S?-matrix constraint. It can only be used for Green’s functions. By this reason
in both commutative and noncommutative QFTs with the covariant?-product the
proof of unitarity and causality conditions for theS?-matrix is the same, since
Green’s functions in these theories coincide exactly.

There exist other definitions which refer to the properties of the operator
fields. In particular there is the proposal of Lehmannet al. (1955, 1957) that the
fields commute outside the light cone. However, definition of the light cone is
changed in NQFT. The formulation of Bogolubov causality in terms of cutting
rules for diagrams was done by ’t Hooft and Veltman (1973). We will give here
the main idea of their scheme of the construction.

8.4.2.4. The Largest Time Equation.Instead of a function (8.71) corresponding to
some diagram, let us define new functionsF?

θ ,

F?
θ (x1, x2, . . . , xi , . . . , xj , . . . , xn) (8.75)

where one or more of the variablesx1, . . . , xn are underlined. This function is
derived from the original function (8.71) by the following.

1) A propagator1ki is unchanged if neitherxk nor xi is underlined.
2) A propagator1ki is replaced by1+ki if xk but notxi is underlined.
3) 1ki is replaced by1−ki if xi but notxkis underlined. (8.76)

4) 1ki is replaced by1∗ki if xk andxi are underlined.
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5) For any underlinedx, replace one factori by−i . Apart from that, the rules
for the vertices remain unchanged. This latter fact is very important for
NQFT.

Equations (8.68) and (8.70) lead trivially to an important equation, thelargest time
equation. Assume the timexi 0 is larger than any other time component. Then any
functionF?

θ in whichxi is not underlined equals minus the same function but with
xi now underlined

F?
θ (x1, x2, . . . , xi , . . . xj , . . . , xn) = −F?

θ (x1, x2, . . . , xi , . . . xj , . . . , xn)

(8.77)

The minus sign is a consequence of point 5. It is useful to invent a diagrammatic
representation of the newly defined functions: Any functionF?

θ is represented by
a diagram where any vertex corresponding to an underlined variable is provided
with a? circle (?).

Notice that ifF?
θ (x1, x2, x3) is given by Eq. (8.72) then

F?
θ (x1, x2, x3) = (ig)3 ? 1+31 ? 1

?
23 ? 1

−
12? (8.78)

The corresponding diagram is as follows (Fig. 10):

Fig. 10.

If the time component ofx3 is largest we have, for instance (Fig. 11),

Fig. 11.

For such a diagram it is impossible to see if a given line connecting a star
circled to an unstar circled vertex corresponds to a1+ or1− function. But because
of Eq. (8.69) the result is the same anyway. Energy always flows from the uncircled
to the circled vertex, because of theθ function in Eq. (8.69). Of course there is
no restriction on the sign of energy flow for lines connecting two circled or two
uncircled vertices.

8.4.2.5. Absorptive Part.To define the contribution of a diagram to theS?-matrix
the corresponding functionF?

θ (x1, . . . , xn) must be multiplied with the appropri-
ate plane waves (or source functions) using the?-product for the ingoing and
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Fig. 12.

outgoing lines and integrated over allxi . For instance, the functionF?
θ (x1, . . . , x6)

corresponding to the diagram (Fig. 12) must be multiplied by

eip1x1 eip2x6 e−ik1x3 e−ik2x4

with the star product in the appropriate places between the Green functions, and
subsequently integrated overx1, . . . , x6. The result reads

S6
? =

1

(2π )4·6

∫
d4x1 . . .

∫
d4x6 eip1x1 ? 1(x1− x2) ? 1(x2− x5) ? 1(x2− x3)

× ? e−ik1x3 ? 1(x3− x4) ? e−ik2x4 ? 1(x4− x5) ? 1(x5− x6)

× ? eip2x6 ? 1(x6− x1) (8.79)

Next it will be taken as the covariant star product (?)c instead of the usual star-
product in (8.79). For the time ordering of the variousxi Eq. (8.77) takes the
general form ∑

inderlinings

F?
θ (x1, . . . , xi , . . . , xj , . . . , xn) = 0 (8.80)

The summation is taken over all possible ways that the variables may be underlined.
There is also one term, the last, where all avriables are underlined. In this case,

F?
θ (x1, x2, . . . , xn) = F?

θ (x1, x2, . . . , xn)∗ (8.81)

The proof of Eq. (8.80) is trivial.
In the momentum space Eq. (8.80) reduces to

F̃θ (k1, . . . , kn)+ ˆ̃Fθ (k1, . . . , kn) = −
∑

cuttings

F̃
c
θ (k1, . . . , kn) (8.82)

whereF̃ θ is the Fourier transform of the functionF without underlinings, ˆ̃Fθ the
Fourier transform of the functionFθ with all variables underlined. The functionsFc

θ

correspond to all nonzero diagrams containing both star circled and uncircled (with
star) vertices. They correspond to all possible cuttings of the original diagram with
the prescription that for a cut line the propagator function1(k) must be replaced
by 1±(k) with the sign such that energy is forced to flow towards the shaded
region. Equation (8.82) is Cutkosky’s (1960) cutting rule (for detail, see ’t Hooft
and Veltman, 1973).
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Notice that theT?-matrix is obtained by multiplying by−i , we see that
Eq. (8.82) is of precisely the same structure as the unitarity Eq. (8.74). How-
ever, Eq. (8.82) holds for a single diagram, while unitarity is a property true for
a transition amplitude, that is for the sum of diagrams contributing to a given
process.

Equation (8.82) holds for any theory described by a Lagrangian, whether it
is unitary or not. The Feynman rules for̂F̃θ are, however, different from those for
T+? . Therefore, if Eq. (8.82) is to truly imply unitarity a number of properties must
hold.

8.4.2.6. Causality.Let us consider some diagram that represents a function
F?
θ (x1, . . . , xn). Let xi andxj be any two variables, and the time component ofxj

be larger thanxi 0. The following equation holds independently of the time ordering
of the other time components∑

underlinings
expect xi

F?
θ (x1, . . . , xk, . . . , xn) = 0 if xi 0 < x j 0 (8.83)

Again terms cancel in parts. We do not need the diagrams wherexi is underlined,
becausexi 0 is never the largest time.

Equation (8.83), when multiplied by the appropriate source (or plane wave)
functions and integrated over allx exceptxi andxj , is the single diagram version
of Bogolubov’s causality condition. His notation is[

δ

δg(xi )
(?)c

δ

δg(xj )
(?)cS?

]
(?)cŜ?

+ δ

δg(xi )
(?)cS?(?)c

δ

δg(xj )
(?)cŜ? = 0 if xi 0 < x j 0. (8.84)

Here the first term describes cut diagrams (including the case of no cut at all—
the unit part of̂S?) with xi andxj not circled, and the second term denotes diagrams
with xj but notxi circled (star).Ŝ? is theS?-matrix obtained from the conjugate
Feynman rules (i.e., all wertices underlined), and will often be equal toS+. Further,
as beforeg(x) is the coupling constant, made into a function of spacetime.

Similarly we consider the case whenxi 0 > x j 0. Then we have an equation
where nowxj is never to be underlined. Separating off the term with no variable
underlined, one can combine equation, with the result

F?
θ (x1, . . . , xn) = − θ (xj 0− xi 0)

′∑
i

F?
θ (x1, . . . , xk, . . . , xn)

− θ (xi 0− xj 0)

′∑
j

F?
θ (x1, . . . , xk, . . . , xn) (8.85)
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The prime indicates absence of the term without underlined variables. The index
i implies absence of diagrams withxi underlined.

The summations in Eq. (8.85) still contain many identical terms, namely those
where neitherxi or xj is underlined. All these may be taken together to give

F?
θ (x1, . . . , xn) = −

′∑
i j

F?
θ (x1, . . . , xn)− θ (xj 0− xi 0)

∑
underlined

i not

F?
θ (x1, . . . , xn)

− θ (xi 0− xj 0)
∑

underlined
i not

F?
θ (x1, . . . , xn) (8.86)

The first term on the right-hand side of Eq. (8.86) is a set of cut diagrams, withxi

andxj always in the unshaded region. They represent the productS?(?)cŜ? with
the restriction thatxi andxj are vertices ofS?. One can apply in this covariant star
product. Doing this as many times as necessary, the right-hand side of Eq. (8.86)
can be reduced entirely to the sum of two terms, one containing a functionθ (xi 0−
xj 0) multiplying a function whose Fourier transforms containsθ -functions forcing
energy flow fromi to j , the other containing the opposite combination. This is
precisely of the form indicated in Section 8.4.2.3.

Now turn to Eq. (8.86). Introducing forθ (x) the Fourier representation
Eq. (8.70b), one can see thatθ as another kind of propagator connecting the points
xi andxj . Multiplying by the appropriate source (plane wave) functions and in-
tegrating over allxi , we obtain the following diagrammatic equation (Fig. 13):

Fig. 13. The blob stands for any diagram or collection of diagrams.

The points 1 and 2 indicate two arbitrary selected vertices. The “self-
inductance” is the correction due to theθ -function, and is obviously noncovariant:

(8.88)

In the diagrams (8.87) on the right-hand side summation over all cuts with
the points 1 and 2 in the position shown is intended.
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The Feynman rules for the cut diagrams (for the simple scalar theory):

Vertex in unshadowed region:ig(2π )4.
Vertex in shadowed region:−ig(2π )4.

For a spin-1/2 particle everything obtains above by multiplying with the factor
−i k̂+m.

Let us consider expression

with J1 andJ2 nonzero ifk0 > 0. The unitarity Eq. (8.82) reads (Fig. 14),

Fig. 14.

The complex conjugation does apply to everything except the sourcesJ. The
second term on the right-hand side is zero, because of the conditionk0 > 0. The
equation becomes

J

[
i (2π )4 1

k2+m2− i ε
− i (2π )4 1

k2+m2+ i ε

]
= J

[
i 2(2π )8

(2π )3
θ (k0)δ(k2+m2)

]
J

Note that the vertex in the shadowed region gives a factor−i (2π )4. With

1

a− i ε
= P

(
1

a

)
+ iπδ(a),
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it is seen that the equation holds true. Also Eq. (8.87) can be verified (Fig. 15).

Fig. 15.

We now obtain (note the minus sign for vertex in shadowed region)

i (2π )4 1

k2+m2− i ε
= i 2(2π )8

(2π )32π i

∫ ∞
−∞

dp0

{
1

−p0− i ε
θ (k0− p0)

× δ[(k− p)2+m2] + 1

p0− iε
θ (−k0+ p0)δ[(k− p)2+m2]

}
|p=0

The four-vectorp0 has zero space components (see Eq. (8.88)). Thep0 integration
is trivial and gives the desired result.

8.4.2.7. Unitarity. If the cutting Eq. (8.82), diagrammatically represented as
(Fig. 16), corresponding toT? − T+? = iT+? (?)cT?, is to imply unitarity, the fol-
lowing must hold:

1) The diagrams in the shadowed region must be those that occur inS+? ;
2) the1+ functions must be equal to what is obtained when summing over

intermediate states.

Notice that point 1 will be true if the Lagrangian generating theS?-matrix is its
own conjugate. Point 2 amounts to the following. The 2-point Green’s function,
on which the definition of theS?-matrix source was based, contained a matrixKi j .
Indeed, consider the diagrams connecting two sources:
The corresponding expression is

J̃i (k
′)Gi j (k, k′)Jj (k) (8.90)

The 2-point Green’s function will in general have a pole at some value−M2 of
the squared four-momentumkν . If there is no pole, there will be no corresponding

Fig. 16.
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S?-matrix element; such will be the case if a particle becomes unstable because of
the interactions. At the pole Green’s function will be of the form

Gi j (k, k′) = (2π )4i δ4(k+ k′)
Ki j (k)

k2+ M2
at k2 = −M2

The matrix residueKi j can be a function of the componentskν , with the restriction
thatk2 = −M2.

One can treat the currents for emission of a particle, corresponding to in-
coming particles of theS?-matrix. Define a new set of currentsJ(a)

i one for every
non-zero eigenvalue ofK , which are mutually orthogonal and eigenstates of the
matrix K (k)

J(a)
i J(b)

i = 0 if a 6= b

Ki j (k)J(a)
j (k) = f a(k)J(a)

i (k) (8.91)

and normalized such that[
J(a)

j (k)
]∗

K ji (k)J(a)
j (k) =

{
1 for integer spin
k0
m for half—integer spin

(8.92)

This is possible only if all eigenvalues ofK are positive. In the case of negative
eigenvalues, normalization is done with minus the right-hand side of Eq. (8.92).
The sources thus defined are the properly normalized sources for emission of a
particle or an antiparticle (the latter follows from consideringK̃ (−k)).

Thus in consideringS+? (?)cS? one will encounter (particle-out ofS?, particlein
of S+? ):

∑
a

K+i j (−k)J∗(a)
j (k)Ja

l (k)Klm(−k) (8.93)

in the sum over intermediate states.K is from the propagators attached to
the sources. Because ofL = (L)conjugate we haveK+lm(−k) = Klm(k). Also if
J(k)K (−k) ∼ J(k) then K+(−k)J∗ ∼ J∗, showing thatJ and J∗ are the ap-
propriate eigen currents ofS? andS+? . If unitarity is to be true, we require that this
sum (8.93) occurring inS+? (?)cS? equals the matrixKim occurring when cutting a
propagator.
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The proof of this is simple. SupposeKi j is diagonal with diagonal elementsλi .
The current-defining Eqs. (8.91) and (8.92) imply that the currents are of the form

J(a) =



0
...

0

1/
√
λa

0
...

0


There are no currents corresponding to zero eigenvalues Obviously,∑

a

J(a)∗ J(a) = k−1 (8.94)

and this remains true if one provides the currents with phase factors, etc.
As in the local QFT for spin-1/2 particles things are slightly more complicated,

because ofγ 4 manipulations. For instance, one will have

K+(−k)γ 4 = γ 4K (k) (8.95)

Also the normalization of the currents is different. One finds the correct expres-
sion when summing up particle-out/particle-in states, but a minus sign extra for
antiparticle-out/antiparticle-in states. This factor is found back in the prescription
−1 for every fermion loop.

Let

L? = −ψ̄(x) ? (∂̂ +m)ψ(x)+ 1

2
φ(x) ? (h−m2)φ(x)+ gψ̄(x) ? ψ(x) ? φ(x)

be total Lagrangina of the scalar–spinor interacting system. Then there are four
2-point Green’s functions:
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Note the minus sign for the incoming antiparticle wave function. Scalar particle
self-energy is

−g2δ4(k− k′)
∫

d4 p coshθ
(√

(pk)2− p2k2
)

× −i p̂+m

p2+m2− i ε

−i ( p̂− k̂)+m

(p− k)2+m2− i ε

whereθ is the dimensionful parameter in spacetime noncommutativity. Note the
minus sign for the closed fermion loop. Cut diagram (remember−i (2π )4 for vertex
in shadowed region):

−(2π )2g2δ4(k− k′)
∫

d4 p coshθ
√

(pk)2− p2k2(−i p̂+m)θ (p0)

× δ(p2+m2)[−i ( p̂− k̂)+m]θ (k0− p0)δ[( p− k)2+m2]

Decay of scalar into two fermions:

ig(2π )4
√

4p0q0ū(p)uα(q)
[
coshθ

√
(pk)2− p2k2

]1/2
× δ4(k− p− q)
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The superscriptα now indicates antiparticle spinor. The complex conjugate, but
with k′ instead ofk, is

−ig(2π )4
√

4p0q0ūα(q)u(p)
[
coshθ

√
(pk′)2− k′2 p2

]1/2
δ4(k′ − p− q)

The product of the two summed over intermediate states is

(2π )8g24p0q0

∫ ∫
d3 p d3q

(2π )62p02q0

[
coshθ

√
(pk)2− k2 p2

]1/2

×
[
coshθ

√
(pk′)2− k′2 p2

]1/2
× δ4(k− p− q)δ4(k′ − p− q)

1

2p0

× (−i p̂+m)
−1

2q0
(i q̂ +m)

Note the minus sign for the q-spinor sum.
Sing p0 =

√
p2+m2, we have∫

d3 p

2p0
=
∫

d4 pθ (p0)δ(p2+m2)

and similarly forq. Theq integration can be performed

−(2π )2g2δ4(k− k′)
∫

d4 pθ (p0)δ(p2+m2) coshθ
√

(pk)2− k2 p2θ (k0− p0)

× [−i ( p̂− k̂)+m]δ[( p− k)2+m2][−i p̂+m]

which indeed equals the result for the cut diagram. The minus sign for the closed
fermion loop appears here as a minus sign in front of the antiparticle spinor
summation.

9. SOME GEOMETRICAL AND PHYSICAL CONSEQUENCES OF
SPACE-TIME NONCOMMUTATIVITY

9.1. Specific Rule of Differentiation and Integration of Noncommutative
Functions

9.1.1. Differentiation

Because of noncommutativity of spacetime points a rule of differentiation of
noncommutative functions with respect to noncommuting variables is changed as
follows.
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1. Letϕ(x) be any smooth function, then its star product in noncommutative
spacetime reads

ϕθ (x) = exp

(
1

2
ln ϕ(x)

)
(?)c exp

(
1

2
ln ϕ(x)

)
(9.1)

Making use of the covariant star product formula (2.12), one gets

ϕθ (x) = ϕ(x)

(
1+ θ

2

2
T1(ϕ)+ θ

4

4!
T2(ϕ)+ · · ·

)
(9.2)

where

T1(ϕ) = 1

4

{
ϕ−2(x)

[
∂2
νµϕ · ∂2

νµϕ − (hϕ)2
]

+ ϕ−3(x)
[

hϕ · ∂µϕ · ∂µϕ − ∂νϕ
(
∂ρϕ∂

2
ρνϕ

)]}
, (9.3)

T2(ϕ) = 1

ϕ(x)

[(
∂αx ∂

y
α

)2− hxhy

]2√
ϕ(x)

√
ϕ(y)

∣∣
y=x

Equation (9.2) with (9.3) is basis of differential and integral calculuses in
noncommutative spacetime.

2. By definition, differentation of noncommuting functions with respect to
noncommuting variables is given by a chain rule:

∂

∂xµ
ϕ(x)⇒ ∂

∂xµ
? ϕ(x) = ∂

∂xµ

{
e

1
2 ln ϕ(x)(?)ce

1
2 ln ϕ(x)}

,

∂2

∂xν∂xµ
ϕ(x)⇒ ∂

∂xν
?
∂

∂xµ
? ϕ(x) = ∂

∂xν

{
e

1
2 ln Fµ(x)(?)ce

1
2 ln Fµ (x)}

(9.4)

and so on. Here

Fµ(x) = ∂

∂xµ

{
e

1
2 ln ϕ(x)(?)ce

1
2 ln ϕ(x)

}
= ∂

∂xµ

{
1+ θ

2

2!
T1(ϕ)+ θ

2

4!
T2(ϕ)+ · · ·

}
ϕ(x) (9.5)

In Eq. (9.5) the functionT1(ϕ) is given by expression (9.3). Similar but
complicated formula holds forT2(ϕ):

T2(ϕ) = ϕ−1(x)
[ (
∂x
α · ∂αy

)2− hx · hy
]2

×
[
exp

(
1

2
ln ϕ(x)

)
(?)c exp

(
1

2
ln ϕ(y)

)] ∣∣
y=x
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and etc. One can also write formulas like (9.4) for any order of differential
forms:

dn ? f (x) ? g(x) = d ? . . . ? d︸ ︷︷ ︸
n−1terms

?d ? f (x) ? g(x) =

d ? . . . ? d︸ ︷︷ ︸
n−1terms

?d · {3xy f (x)g(y)|y=x} = d ? . . . ? d︸ ︷︷ ︸
n−2terms

·Fx = . . .

where

Fx =
{
e

1
2 ln f1(x)(?)c e

1
2 ln f1(x)

}
,

f1(x) = d.[3xy f (x)g(y)|y=x] = coshθ

(√(
∂νx · ∂ y

ν

)2− hxhy

)
d

×[ f (x)g(y)|y=x]

9.1.2. Integration

Integration rule for noncommuting functions over noncommuting variables
defines by similar way:

I1 =
∫

d4x ? ϕ(x) =
∫

d4x exp

(
1

2
ln ϕ(x)

)
(?)c exp

(
1

2
ln ϕ(x)

)
I2 =

∫ ∫
d4x1 ? d4x2 ? ϕ(x1, x2) =

∫ ∫
d4x1 d4x2 F(x1, x2) (9.6)

where

F(x1, x2) = exp

(
1

2
ln f (x1, x2)

)
(?)c exp

(
1

2
ln f (x1, x2)

)
and

f (x1, x2) = 3x2yϕ
1
2 (x1, x2)ϕ

1
2 (x1, y)|y=x2

Similar expressions of (9.6) hold for any order of integrals for noncommuting
functions over many noncommuting variablesx1, . . . , xn.

As seen above the star product meaning noncommutative properties of space-
time coordinates is cancelled by the covariant star product giving strong correlating
variables instead of noncommuting ones.

1. As the next step, we consider some concrete consequences arising from
the definitions (9.1) and (9.2). For example, owing to Eqs. (9.1) and (9.2)
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the Euclidean distance in three-dimensional space acquires the form

X2⇒ X2
θ =
√

X2(?)c

√
X2 = X2

(
1− θ2

X4
+ θ4

(x2)8
+ · · ·

)
= X2 · 1

1+ θ2/X4
(9.7)

where we have used the commutation relations:

[ x̂i , x̂ j ] = θτi j , τi j = σiσ j − σ jσi

σi is the Pauli matrices.
We point out the geometrical rich character of (9.7) due to the non-

commutativity of space. Indeed, single sphere of radius X2 = l 2 in usual
space is decomposed many spheres with different radii in accordance with
Eq. (9.7). It means that from the point of view of dimensionality the
noncommutative space is equivalent to joint spaces with different dimen-
sionalities. We shall solve Eq. (9.7)

X2

1+ θ2

X4

= l 2 (9.8)

or

λ3− l 2λ2− θ2l 2 = 0, x2 = λ (9.9)

This cubic equation has three real solutions and therefore we have follow-
ing set spheres arising from space noncommutativity initially:

(r 2)11 =
(

5

9
− θ

2

l 4

)
l 2, (r 2)12 =

(
1+ θ

2

l 4

)
l 2,

(r 2)21 =
(

20

27
+ 3

4

θ2

l 4

)
l 2, (r 2)22 =

(
θ

i l 2
− 1

2

θ2

l 4

)
l 2

(r 2)31 =
(

20

27
+ 3

4

θ2

l 4

)
l 2, (r 2)32 =

(
θ

i l 2
− 1

2

θ2

l 4

)
l 2 (9.10)

and there also exist four pseudospheres:

(r 2)21 = −
(

8

27
− 1

4

θ2

l 4

)
l 2, (r 2)22 = −

(
θ

i l 2
− 1

2

θ2

l 4

)
l 2

(r 2)31 = −
(

8

27
− 1

4

θ2

l 4

)
l 2 (r 2)32 = −

(
θ

i l 2
− 1

2

θ2

l 4

)
l 2 (9.11)
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2. It will be expected that the Coulomb potential is also changed in the
noncommutative space

ϕc(x)⇒ ϕθc (r ) = e

4π

(
1

r 1/2
(?)c

1

r 1/2

)
(9.12)

After some simple calculations by using definitions (9.1) and (9.2), one
gets

ϕθc (r ) = e

4π

1

r

[
1+ 1

2

θ2

r 4
+ 75

8

θ4

r 8
+ · · ·

]
(9.13)

On the other hand, Eq (9.13) may be understood as a sum of potentials
arising from different dimensionality of space:

ϕθc (r ) = ϕ(3)
c (r3)+ ϕ(7)

c (r7)+ ϕ(11)
c (r11) (9.14)

The first termϕ(3)
c (r3) is the usual Coulomb potential in the three-

dimensional space, while other two termsϕ(7)
c (r7) andϕ(11)

c (r11) are re-
sponsible from 7- and 11-dimensional spaces due to the noncommutative
space. It is obvious that our scheme, i.e., decomposition in Eq. (9.14),
is invariant with respect toO(3), O(7), andO(11) groups and therefore
distancesr3, r7, andr11 can be formally understood as

r3 =
√

x2
1 + x2

2 + x2
3, r7 =

√
x2

1 + · · · + x2
7, r11 =

√
x2

1 + · · · + x2
11

It can be seen easily that

divgradϕθc (r ) = divgrad
(
ϕ(7)

c (r7)+ ϕ(11)
c (r11)

) 6= 0 (9.15)

as it will be expected in the usual sense, however if we define formal di-
vergence denoted trough Div which acts differently on the potential (9.14)
depending on those dimensionality of space, for example,

Divgradϕθc (r ) = divgradϕ(3)
c (r3)+ divgradϕ(7)

c (r7)

+divgradϕ(11)
c (r11) ≡ 0 (9.16)

Since

a3 = gradϕ(3)
c (r3) =

{
− ex1

4πr 3
3

,− ex2

4πr 3
3

,− ex3

4πr 3
3

}
,

a7 = gradϕ(7)
c (r7) =

{
−5θ2

8π
e

x1

r 7
,−5θ2

8π
e

x2

r 7
, · · · ,−5θ2

8π
e

x7

r 7

}
,
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a11 = gradϕ(11)
c (r11) =

{
−9.75

32π
θ4 ex1

r 11
,−9.75

32π
θ4 ex2

r 11
, · · · ,

−9.75

32π
θ4 ex11

r 11

}
(9.17)

From that it follows

diva(3) = − e

4πr 5

(
3r 2

3 − 3x2
1 − 3x2

2 − 3x2
3

) = 0,

diva(11) = − 5θ2

8πr 9

(
7r 2

7 − 7x2
1 − 7x2

2 − . . .− 7x2
7

) = 0,

diva(11) = − 9.75

32πr 13

(
11r 2

11− 11x2
1 − 11x2

2 − . . .− 11x2
11

) = 0 (9.18)

Above statements are valid due to the usual definition of grad, div, etc.,
in the c-number space. However, vector and tensor calculuses are also
changed in the noncommutative space. We now turn to this problem.

9.2. Vector and Geometrical Meaning of the?-Product

Let us consider three-dimensional noncommutative space in which constant
vectora defines as

ax · i + ay · j + az · K (9.19)

where ai (i = x, y, z) are constant c-numbers, while unit three vectorsni (i =
i , j , k) obey commutation relations:

[nI , ?nj ] = θτi j (9.20)

Here τi j and θ are constant antisymmetric three-tensor and dimensionless
scale. In our case

τi j = σiσ j − σiσ j , σiσ j = 2i εi jkσk (9.21)

εi jk is full antisymmetric unit tensorε123= +1. In virtue of (9.20), one gets

i ? i − i ? i = 0, i ? j − j ? i = θτ12

i ? k − k ? i = θτ13, k ? i − i ? k = θτ31

j ? k − k ? j = θτ23 (9.22)

and so on. Here the star product means the star product of the scalar type for vector
n. Thus, the scalar star product of two constant vectorsa andb is given by

a ? b = (ax · i + ay · j + az · k) ? (bx · i + by · j + bz · k)

= b ? a+ 2i θ [a× b] i · σi (9.23)
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where [a× b] is the usual vector product ofa andb—two vectors. In Eq. (9.23)
we have used commutation relations (9.20) and (9.21). Formula (9.23) means that

[a, ?b] = a ? b− b ? a= 2i θ [a× b] i · σi (9.24)

This relation defines geometrical meaning of the scalar star product of two vectors.
This commutator equals to zero when two vectors are parallel. There exist also
cyclic relations:

a ? i − i ? a= 2i θ (azσ2− ayσ3)

a ? j − j ? a= 2i θ (axσ3− azσ1)

a ? k − k ? a= 2i θ (ayσ1− axσ2) (9.25)

Moreover, if coordinate vectorsx,y,zsatisfying commutation relations

[xy− yx] = θτ12,

[xz− zx] = θτ13,

[yz− zy] = θτ23 (9.26)

and its the dimensionful parameterθ are dependent on the time variable then other
relations are valid

ẋ y− ẏx = 1

2
θ̇ τ12, xẏ− yẋ = 1

2
θ̇ τ12

ẍ y− ÿx = 1

4
θ̈ τ12, xÿ− yẍ = 1

4
θ̈ τ12

ẋ ẏ− ẏẋ = 1

4
θ̈τ12 (9.27)

ẋz− żx= 1

2
θ̇ τ13, xż− zẋ = 1

2
θ̇ τ13

ẍz− z̈x= 1

4
θ̈ τ13, xz̈− zẍ = 1

4
θ̈ τ13

ẋż− żẋ = 1

4
θ̈τ13 (9.28)

ẏz− ży= 1

2
θ̇ τ23, yż− zẏ = 1

2
θ̇ τ23

ÿz− z̈y= 1

4
θ̈ τ23, yz̈− zÿ = 1

4
θ̈ τ23

ẏż− żẏ = 1

4
θ̈τ23 (9.29)
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In particular, from relation (9.26) it follows

[r (?)νr ] =
∣∣∣∣∣∣

i j k
x y z
x y z

∣∣∣∣∣∣ = i(yz− zy)− j (xz− zx)

+ k(xy− yx) = iθτ23− jθτ13+ kθτ12

= 2i θ (iσ1+ jσ2+ kσ3) = 2i θ · Eσ (9.30)

whereEσ is the Pauli vector with componentsσ1, σ2, andσ3.
The vector star product for two vectorsa andb is given by

[a(?)νb] =
∣∣∣∣∣∣

i j k
ax ay az

ax ay az

∣∣∣∣∣∣
?

= i(ay ? bz− az ? by)

−j (ax ? bz− az ? bx)+ k(ax ? by − ay ? bx) (9.31)

Finally, in accordance with formulas (9.27)–(9.29) we would like to write yet
one relation for the radius vector depending on time variable

[ ṙ (?)ν ṙ ] =
∣∣∣∣∣∣

i j k
ẋ ẏ ż
ẋ ẏ ż

∣∣∣∣∣∣ = i(ẏż− żẏ)− j (ẋż− żẏ)

+k(ẋ ẏ− ẏẋ) = 1

2
θ̈ Eσ · i (9.32)

9.3. Motion of a Material Point in the Noncommutative Space

Let us consider a variable vectora= a(x, y, z, t) depending on the space
coordinatesxi = (x, y, z) and usual timet. In this case, usual vector analysis can
be easily generalized by using the covariant?-product. In the noncommutative
model the vector velocity and acceleration of the material point have the standard
from

V(t) = dr/dt, Eω(t) = dV/dt

and therefore the Newtonian law has the similar from

mdV/dt = F

or

mEω = mV̇ = mr̈ = F (9.33)
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Multiply both parts of Eq. (9.33) by the radius vectorr with the vectorial star
product:

[r (?)νmr̈ ] = [r (?)νF] (9.34)

Taking into account Eq. (9.32) with the constant parameterθ = const and making
use of the identity

d

dt
[r (?)νmṙ ] = [ ṙ (?)νmṙ ] + [r (?)νmr̈ ]

= 1

2
θ̈ ·mEσ + [r (?)νmr̈ ] = [r (?)νmr̈ ] (9.35)

(sinceθ̈ = 0) one gets the standard form

d

dt
[r (?)νmṙ ] = [r (?)νF] (9.36)

If the forceF belongs along or backward with respect to the direction of the radius
vector

F = γ r (9.37)

then

[r (?)ν ṙ ] = 2i θγ
Eσ
m

t + C (9.38)

where we have used Eq. (9.30). In the usual commutative space Eq. (9.38) withθ =
0 is called the integral of conservation of areas. On the contrary, owing to Eq. (9.38)
in the noncommutative model, conservation of areas does not valid. This is one of
consequences due to the space noncommutativity in classical physics.

Let us consider yet one consequence for the motion of the material point in
the noncommutative space. Multiply the basic Eq. (9.33) by the vectorVdt= dr
with using the scalar star product and obtain

mV̇ ? Vdt = F ? dr

SinceV̇dt = d ? V and therefore

m(V ? d ? V) = F ? dr

By definition

2(V ? d ? V) = d ? (V ? V)

and

d ? (V ? V) = d

[
coshθ

(√(∇ i
r∇R

i

)2−1r1R

)
· (ṙ j · Ṙj )|R=r

]
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It can be seen easily that

d ? (V ? V) = d
V2

2
(9.39)

since

∂

∂xi
ṙ j = d

dt
δi j = 0

On the other hand

F ? r = coshθ
√(∇ i

r∇R
i

)2−1r1R · F j (r ) d Rj |R= r = F · r + Gθ

where

Gθ =
[
coshθ

√(∇ i
r∇R

i

)2−1r1R− 1

]
d Rj · F j (r )|R= r

Collecting these results, one gets

d

(
mV2

2

)
= (1− θ2 f (r ))F · dr (9.40)

Here a functionf (r ) has arisen from the functionG0 in theθ2-approximation and
depends on a concrete form of the forceF(r). For example, if the forceF(r) is
given Eq. (9.37) thenf (r ) = 0. The expression12mv2 is called the living force of
the material point and the scalar productF · r presents an elementary work of the
forceF through displacementdr .

Finally, one can rewrite the Newtonian law in the form

dmV = F dt

and integrate its both parts over the limits from the momentt0 to the momentt.
The result reads

mV −mV0 =
∫ t

t0

F dt

The integral of the forceF over time, i.e., the integral

I =
∫ t

t0

F dt

is called momentum of the forceF during the time intervalt − t0. In the noncom-
mutative space this is the same as in the usual case.
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9.4. Appearance of Inertia as a Residual Effect due to the
Noncommutative Space

The origin of inertia presents one of the fundamental problems of physi-
cal theory. Newton and Mach considered this problem in different ways. Newton
assumed that inertial forces such as centrifugal ones must appear because of ac-
celeration with respect to “absolute space,” while Mach suggested that inertial
forces are more probably generated by the general mass of heavenly bodies. The
difference in their assertions is not metaphysical but physical, since if Mach were
right then a large mass would give rise to small alterations of the inertial forces
near it, while if Newton were right, then such effects would not appear (for details
and further discussion, see Bertottiet al., 1984, Weinberg, 1972.

Here our gaol is to show that the origin of the inertial force may be under-
stood as a residual (or averaging) effect due to the noncommutative space at large
distances. Without loss of generality, we suppose that space noncommutativity is
based on the following relations

[ x̂i , x̂ j ] = GNτ i j (9.41)

whereGN is the Newtonian constant andτi j is given by Eq. (9.21).
Second assumption is that motion of any bodies in such space is considered

as a motion in a continuous medium like liquid and those velocity depends on
coordinate variablesxi andt:

v(t)⇒ v(xi , t)

and therefore velocity of bodies becomes noncommutative variables and we shall
understand the Newtonian Eq. (9.33) as an equation with the star product

m
d

dt
v?(xi , t) = F (9.42)

or in components:

m
d

dt
ν?x(xi , t) = Fx

m
d

dt
ν?y(xi , t) = Fy

m
d

dt
ν?z(xi , t) = Fz (9.43)

As before, in accordance with Eq. (9.1) one defines

v?j (xi , t)⇒ vG
j (xi , t) = exp

(
1

2
ln v j (xi , t)

)
(?)c exp

(
1

2
ln v j (xi , t)

)
(9.44)

( j = x, y, z). Here in our particular case, the parameterθ is equal to the Newtonian
constantGN.
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Thus, space noncommutativity gives rise nonlinear self-turbulence version of
the Newtonian equation with some internal force arisen from Eqs. (9.2) and (9.3)
for spatial components of the velocity:

m
dvi

dt
= Fext

i + F int
i (9.45)

where

F int
i = −

G2
N

8
m

d

dt

{
v−1

i (X, t)
[
∂2

k j vi ∂
2
k j vi − (1vi )

2
]

+ v−2
i (X, t)

[
1vi · ∂ j vi ∂ j vi − ∂ j vi

(
∂kvi ∂

2
k j vi

)]}
(9.46)

Herei = x, y, z. We see that the force (9.46) depends nonlinearly on velocity field
and is negligible small due to the factorG2

N with respect to measurable effects in
classical physics for any values of the velocity except some extremal conditions: at
the singular point v= 0 and changing its direction quickly. For example, terms like
−v−2

i (x, t)ν̇i and−2v−3
i (x, t)v̇i in Eq. (9.46) give similarδ-function effectδ(v) at

v→ 0. This reflects exactly innermost specific properties of the inertial force. It
seems that the origin of inertia is linked with pure spacetime properties, namely its
noncommutative nature. This fact is very interesting and more attractive. Even if
time is noncommutative, then Eqs. (9.41), (9.42), and (9.45) are valid with a little
difference:

[ x̂ν , x̂µ] = GNτνµ

m
d

dt
? v?(x, t) = F (9.47)

m
dvi

dt
= Fext

i + F̃ext
i (9.48)

where

τvµ = γvγµ − γµγv

and

F̃ int
i = −

G2
N

8
m

d

dt

{
v−1

i (X, t)
[
∂2

vµvi ∂
2
vµvi − (hvi )

2
]

+ v−2
i (X, t)

[
hvi · ∂µvi ∂µvi − ∂µvi(∂ρvi ∂

2
ρvvi )]

}
(9.49)

Hidden forces (9.46) and (9.49) are responsible for inertia but do not detectable
in process of motion of bodies except for specific moments: changing in direction
or absolute value of those velocity quickly (in particular, from which a centrifugal
force is arisen). However, an external force switches off or on at an instant time and
at the same time the hidden force does rech its largest value at such short moment,
after that it turns to zero quickly.



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474207 November 12, 2003 0:45 Style file version May 30th, 2002

Noncommutative Field Theory 2691

9.5. Differential Operatiors in the Noncommutative Space

Our next purpose is to find operation of differential operators like grad, div,
rot,1 = ∇2 in the noncommutative space, which played an important role in the
noncommutative field theory.

9.5.1. Gradient or the Hamiltonian Operator (Nabla Operator)

In the noncommutative space, gradient of a scalar function is defined by using
the?-product

gradθϕ = grad? ϕ = ∇ ? ϕ = i
∂

∂x
? ϕ + j

∂

∂y
? ϕ + k

∂

∂z
? ϕ (9.50)

whereϕ = ϕ(x, y, z, t) is a scalar field.
Further, it is easily seen that by means of this operator one can express gradient

of one vector by an another vector

(v(?)s∇) ? a= vx ?
∂

∂x
? a+ vy ?

∂

∂y
? a+ vz ?

∂

∂z
? a (9.51)

The divergence of the vector a may be formally considered as the scalar star product
of the symbolic vector∇ on the vectora

a= iax + jay + kaz

Indeed, carrying out its remultiplication by the formula for the scalar (star) product
of two vectors

b ? a= bx ? ax + by ? ay + bz ? az

and assuming

bx = ∂

∂x
, by = ∂

∂y
, bz = ∂

∂z

one gets

∇ ? a= ∂

∂x
? ax + ∂

∂y
? ay + ∂

∂z
? az = div ? a (9.52)

Now we would like to change the star product in above formulas by its
covariant version (?)c and after thatgrad, div, etc., are considered as the standard
operations.

1. gradθϕ = grad

{
exp

(
1

2
lnϕ(x)

)
(?)c exp

(
1

2
lnϕ(x)

)}
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2. {(v · ∇)a}x = vx ?
∂

∂x

{
exp

(
1

2
ln ax

)
(?)cexp

(
1

2
ln ax

)}
+ vy ?

∂

∂y

{
exp

(
1

2
ln ax

)
(?)cexp

(
1

2
ln ax

)}
+ vz ?

∂

∂z

{
exp

(
1

2
ln ax

)
(?)cexp

(
1

2
ln ax

)}
= vx

{
exp

(
1

2
ln f x

x

)
(?)cexp

(
1

2
ln f x

x

)}
+ vy

{
exp

(
1

2
ln f y

x

)
(?)cexp

(
1

2
ln f y

x

)}
+ vz

{
exp

(
1

2
ln f z

x

)
(?)cexp

(
1

2
ln f z

x

)}
(9.53)

and similar formulas hold fory- andz-components. Here

f x
x =

∂

∂x

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln ax

)}
,

f y
x =

∂

∂y

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln ax

)}
,

f z
x =

∂

∂z

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln ax

)}
While Eq. (9.52) takes the form

∇ ? a⇒ ∂

∂x

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln ax

)}
+ ∂

∂y

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln ay

)}
+ ∂

∂z

{
exp

(
1

2
ln ax

)
(?)c exp

(
1

2
ln az

)}
(9.54)

Consider some examples. Letϕ(x, y, z) be the length of radius vector in the three-
dimensional space:

ϕ =
√

x2+ y2+ z2 = r

Then, by definition

aθ = ∇ ? r ⇒ ∇
{

exp

(
1

2
ln r

)
(?)c exp

(
1

2
ln r

)}
(9.55)
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Direct calculations give

rθ = exp

(
1

2
ln r

)
(?)c exp

(
1

2
ln r

)
= r

(
1+ 3

8

θ2

r 4
+ 2377

8.64

θ4

r 8
+ · · ·

)
(9.56)

and therefore

aθ = r
r

[
1− 9θ2

8π4
− 2377· 7

8 · 64

θ4

r 8

]
(9.57)

This is an explicit form of the gradient of the Euclidean distancer in the noncom-
mutative space.

The second example is the gradient of the modified Coulomb law (9.12) or
(9.13) in the noncommutative model:

Eθ = −∇ ? e

4π

1

r
= e

4πr 3
r
[
1+ 5

2

θ2

r 4
+ 75 · 9

8

θ4

r 8

]
(9.58)

This is an electric static field of the point-like chargee in the noncommutative
space.

9.5.2. Whirl (or Rotor) of a Vector and the Laplacian Operator in the
Noncommutative Space

Rotor of a vector in the noncommutative model is defined by using the vec-
torial star product:

rotθa = ∇(?)va= i
(
∂

∂y
? az− ∂

∂z
? ay

)
+j
(
∂

∂z
? ax − ∂

∂x
? az

)
+ k

(
∂

∂x
? ay − ∂

∂y
? ax

)
(9.59)

We know that from the pure geometrical point of view this differential operator in
the usual commutative space possesses remarkable property:

rotgradϕ = εi jk
∂

∂xj

∂

∂xk
ϕ = 0 (9.60)

for any scalar field. It is easy to see that this fundamental property of space does
not valid in the noncommutative space.

Let us consider two concrete examples:

a(1) = ∇ ? r = r
r

[
1− 9

8

θ2

r 4
− 2377.7

8.64

θ4

r 8

]
(9.61)
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and

a(3) = − e

4π
∇ ? 1

r
= e

4πr 3
r
[
1+ 5

2

θ2

r 4
+ 75.9

8.

θ4

r 8

]
(9.62)

We would like to calculate rotor of these vectors by the formula

rot ? a(i ) = i
(
∂y ? a(i )

z − ∂z ? a(i )
y

)+ j
(
∂z ? a(i )

x − ∂x ? a(i )
z

)
+ k

(
∂x ? a(i )

y − ∂y ? a(i )
x

)
(9.63)

where by definition of the covariant star product

∂y ? a(i )
z = ∂y

{
exp

(
1

2
ln a(i )

z

)
(?)c exp

(
1

2
ln a(i )

z

)}
(9.64)

and so on. First of all, we calculate the following expressions:

A(i )
z = exp

(
1

2
ln a(i )

z

)
(?)c exp

(
1

2
ln a(i )

z

)
= zλ−i /2−3(y2+ x2)N(i )+ i

16

1

z
(x2+ y2)λ−i /2−2

+ i

4z
λ−i /2−1

(
−3

4
+ 1

4
i

)
+ i 2

8
zλ−i /2−2

×
[
−1

2
− i − 4

i
− 2

(
i

4
− 3

)2
]

(9.65)

A(i )
x = xλ−i /2−3(y2+ z2)N(i )+ i

16

1

x
(z2+ y2)λ−i /2−2

+ i

4x
λ−i /2−1

(
−3

4
+ 1

4
i

)
+ i 2

8
xλ−i /2−2

×
[
−1

2
− i − 4

i
− 2

(
i

4
− 3

)2
]

(9.66)

A(i )
y = yλ−i /2−3(z2+ x2)N(i )+ i

16

1

y
(x2+ z2)λ−i /2−2

+ i

4y
λ−i /2−1

(
−3

4
+ 1

4
i

)
+ i 2

8
yλ−i /2−2

×
[
−1

2
− i − 4

i
− 2

(
i

4
− 3

)2
]

(9.67)

From these equations it followsA(i )
x = A(i )

z (z→ x, x→ z) and
A(i )

y = A(i )
z (z→ y, y→ z). Here λ = x2+ y2+ z2, N(i ) = 1

4 i 2(i − 1)(1
4 i +
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1)− 1
4 i 2, i = 1, andi = 3 for (9.61), and (9.62), respectively. Further, taking into

account formulas (9.64), (9.65)–(9.67), one can calculate rotor of vectors (9.61)
and (9.62) by using Eq. (9.63)

rotθa(1) = rot ? a(1) = rot ? grad? r = θ2

2

×
{

i
[

7

16
zy(z2 − y2)r−9 + 1

2

(
y

z
− z

y

)
r−5 − 5

16

(
y

z
(x2 + y2)− z

y
(x2 + z2)

)
r−7

]
+ j

[
7

16
xz(x2 − z2)r−9 + 1

2

( z

x
− x

z

)
r−5 − 5

16

( z

x
(y2 + z2)− x

z
(y2 + x2)

)
r−7

]
+ k

[
7

16
yx(y2 − x2)r−9 + 1

2

(
x

y
− y

x

)
r−5 − 5

16

(
x

y
(z2 + x2)− y

z
(z2 + y2)

)
r−7

]}
(9.68)

and

rotθa(3) = rot ? a(3) = rot ? grad?

(
− e

4π

1

r

)
= e

4π

θ2

2

{
i
[

243

16
zy(z2− y2)r−11+ 3

8

(
y

z
− z

y

)
r−7

− 21

16

(
y

z
(x2+ y2)− z

y
(x2+ z2)

)
r−9

]
+j
[

243

16
xz(x2− z2)r−11+ 3

8

( z

x
− x

z

)
r−7

− 21

16

( z

x
(y2+ z2)− x

z
(y2+ x2)

)
r−9

]
+k

[
243

16
yx(y2− x2)r−11+ 3

8

(
x

y
− y

z

)
r−7

− 21

16

(
x

y
(z2+ x2)− y

x
(z2+ y2)

)
r−9

]}
(9.69)

From Eqs. (9.68) and (9.69) it is immediately seen that rotgrad does not identitically
zero in the noncommutative space.

For completeness, we want to calculate div? grad?ϕ in the noncommutative
model. For two concrete chosen vectors (9.61) and (9.62) it takes the form:

div ? a(3) = div ? grad?

(
− e

4π

1

r

)
= − e

4π

θ2

2

{
431

4
r−7
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− 27

4
(z2y2+ z2x2+ x2y2)r−11− 3

16

[
x2+ y2

z2
+ x2+ z2

y2
+ y2+ z2

x2

]
r−7

− 81.7

16
(z4+ y4+ x4)r−11

}
(9.70)

div ? a(1) = div ? grad? r = 2

r
+ θ

2

2

{
229

32
r−5

+7

2
(x2z2+ z2y2+ x2y2)r−9− 1

16

[
x2+ y2

z2
+ x2+ z2

y2
+ y2+ z2

x2

]
r−5

+ 1

8

(
1

z2
+ 1

y2
+ 1

x2

)
r−3+ 35

36
(z4+ y4+ x4)r−9

}
(9.71)

respectively. We know that in the usual commutative spacedivgrad
(− e

4π
1
r

) = 0
while as seen from Eq. (9.70) this identity does not valid for the noncommutative
theory.

By definition, we call div? grad the Laplacian operator in the noncommutative
space and denote it through1?,

1? = div ? grad (9.72)

The Laplacian equation

1ϕ = 0

in the noncommutative space satisfies up to order ofθ2:

1?ϕ = O(θ2)

or

(∇(?)c∇)ϕ = 1?ϕ = O(θ2)

where

1?ϕ = ∇(?)c∇ ? ϕ = 1? ? ϕ.

This is definition of the Laplacian operator in the noncommutative space.

9.5.3. The Differential Operator divrota and Possible Evidence of the Dirac
Monopole in the noncommutative Space

We recall that definition of divergence gives rise identity

divrot a= 0
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in the commutative space. It means that rotor of the vector field for any vector a is
free of sources. Therefore basic parts of the Maxwell equation are

div E = 4πρ and divH = 0,

whereρ is the density of electric charges.
By analogy with the electric charge we suppose the existence of a magnetic

chargeg and its magnetic field generated by this charge. The noncommutative
space allows us to appearance of such magnetic field given by the vector potential

Ag = − g

4π
grad

(
1

r

)
(9.73)

Indeed,

Hg = rot ? Ag = − g

4π
rot ? grad?

1

r
6= 0 (9.74)

However, if we would like to takedivof the vector (9.69) in the usual sense (without
the?-product) then we observe that

divrotθa(3)
g = divHg = divrot ? grad

(
− g

4π

1

r

)
= ∂

∂x

(
∂y ? a(3)

z − ∂z ? a(3)
y

)+ ∂

∂y

(
∂z ? a(3)

x − ∂x ? a(3)
z

)
+ ∂

∂z

(
∂x ? a(3)

y − ∂y ? a(3)
x

)
(9.75)

= g

4π

θ2

2

{
−243.11

16
xyz(z2− y2)r−13− 21

4

(
y

z
− z

y

)
xr−9

+ 189

16
x

[
y

z
(x2+ y2)− z

y
(x2+ z2)

]
r−11

− 243.11

16
xyz(x2− z2)r−13− 21

4

( z

x
− x

z

)
yr−9

+ 189

16
y
[ z

x
(y2+ z2)− x

z
(y2+ x2)

]
r−11

− 243.11

16
xyz(y2− x2)r−13− 21

4

(
x

y
− y

x

)
zr−9

+ 189

16
z

[
x

y
(z2+ x2)− y

x
(z2+ y2)

]
r−11

}
≡ 0 (9.76)

This identity means that in the noncommutative space equation

div ? rotθa3
g = div ? Hg = θ4 · f (x, y, z) (9.77)
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is almost zero and proportional to theθ4-order of approximation, where

f (x, y, z) = − g

4π

(
∂H (x)

∂x
+ ∂H (y)

∂y
+ ∂H (z)

∂z

)
(9.78)

and

H (i ) = (T ′(i )yx

)2+ (T ′(i )yz

)2+ (T ′(i )zx

)2
−T ′(i )xx T ′(i )yy − T ′(i )zz T ′(i )xx − T ′(i )zz T ′(i )yy (9.79)

(i = x, y, z). Let i = z= 3 then

T (3)
x = −

11

2
Q1/2

3 xλ−15/4+ 1

2
Q−1/2

3 M (3)
x λ
−11/4,

M (3)
x = −

248

8
(3x2y− y3)+ 3

8

(
1

y
+ y

x2

)
λ2+ 3

2

(
x

y
− y

x

)
xλ

−21

16

[
z2+ 3x2

y
+ y

x2
(z2+ Y2)

]
λ− 21

8

[
x

y
(z2+ x2)− y

x
(z2+ y2)

]
x,

T (3)
y = −

11

2
Q1/2

3 yλ−15/4+ 1

2
Q−1/2

3 M (3)
y λ
−11/4,

M (3)
y = −

243

8
(3y2x − x3)+ 3

8

(
x

y2
+ 1

x

)
λ2+ 3

2

(
x

y
− y

x

)
y · λ

−21

16

[
− x

y2
(z2+ x2)− 1

x
(z2+ 3y2)

]
λ− 21

8

[
−x

y
(z2+ x2)− y

x
(z2+ y2)

]
y,

and

T (3)
z = −

11

2
Q1/2

3 zλ−15/4+ 1

2
Q−1/2

3 M (3)
z λ−11/4,

M (3)
z =

3

2

(
x

y
− y

x

)
z · λ− 21

8

(
xz

y
− yz

x

)
λ

−21

8

[
x

y
(z2+ x2)− y

x
(z2+ y2)

]
z

Moreover, the following notation is clear:

T ′(3)
xx =

∂

∂x
T (3)

x , T ′(3)
xy =

∂

∂y
T (3)

x , T ′(3)
xz =

∂

∂z
T (3)

x (9.80)

and so on. Here

λ = x2+ y2+ z2, r = λ1/2,



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474207 November 12, 2003 0:45 Style file version May 30th, 2002

Noncommutative Field Theory 2699

ax = a1 = 243

16
zy(z2− y2)r−11+ 3

8

(
y

z
− z

y

)
r−7

−21

16

[
y

z
(x2+ y2)− z

y
(x2+ z2)

]
r−9,

ay = a2 = 243

16
xz(x2− z2)r−11+ 3

8

( z

x
− x

z

)
r−7

−21

16

[ z

x
(y2+ z2)− x

z
(y2+ x2)

]
r−9,

az = a3 = 243

16
xy(y2− x2)r−11+ 3

8

(
x

y
− y

x

)
r−7

−21

16

[
x

y
(z2+ x2)− y

x
(z2+ y2)

]
r−9

From (9.79) it is easily seen that

H (2) = H (3)(y→ x, x→ z, z→ y)

and

H (1) = H (3)(x→ y, y→ z, z→ x)

It is worth noting that instead of Eq. (9.77) in the noncommutative space the
electric field satisfies equation

div ? gradθa
(3)
e = div ? E = 4πρ + O(θ2) (9.81)

whereρ is the density of the electric charge. Comparing two Eqs. (9.77) and (9.81)
one asserts that probability that observation of a magnetic charge if it exists in
nature is very small.

9.6. Linear Integral, Flow of a Vector Through Surface, and the Gauss
Theorem in the Noncommutative Space

In this section we give some definitions of vector integral calculuses in the
noncommutative space, which played an important role in the tensor analysis for
the noncommutative theory.

9.6.1. The Linear Integral

The linear integral of the vectora along a curveL in the noncommutative
space is given by the star product:∫

L
dr ? a (9.82)
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where

dr ? a= dx ? ax + dy ? ay + dz? az (9.83)

For example, calculate the integral∫
L
(dy ? x − dx ? y)

taking along the contour of the circle:

x2+ y2 = R2

Since, by definition:

dy ? x = dy

{
exp

(
1

2
ln x

)
(?)c exp

(
1

2
ln x

)}
= dy · x

and

dx ? y = dx

{
exp

(
1

2
ln y

)
(?)cexp

(
1

2
ln y

)}
= dx · y,

and therefore one can parameterize this integral by using one variableϕ:

x = R cosϕ y = R sinϕ

or

x dy− y dx= R2dϕ

The result reads∫
L
(dy ? x − dx ? y) =

∫ 2π

0
R2dϕ = 2πR2.

We recall that the linear integral of a vector along a closed curve is called
circular of the vector over this curve.

9.6.2. Flow of the Vector Trough a Surface

Flow of the vector a trough the surfaceS can be written in the form of the
star (scalar) product:∫

S
dS(?)sa=

∫
S

dS? an =
∫

S
dSa(?)sn (9.84)

wheren is a unit normal vector to the surfaceS, and

an = a(?)cn = ax ? cos(n, x)+ ay ? cos(n, y)+ az ? cos(n, z) (9.85)
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Consequence 1.Let a be the constant vector and ifS is the closed surface
then ∮

S

dS? a0 = 0 (9.86)

Since, one can formally write

a0 = exp

(
1

2
ln a0

)
(?)c exp

(
1

2
ln a0

)
= a0 (9.87)

and therefore ∮
S

a0 · dS= a0 ·
∮
S

dS

As a usual commutative theory, vector over the closed surface is equal to
zero, i.e., ∮

S

dS= 0

On the other words,∮
S

cos(n, x) dS= 0,
∮
S

cos(n, y) dS= 0,
∮
S

cos(n, z) dS= 0

Indeed, therefore we obtain Eq. (9.86).
Consequence 2.Let a= r be the radius vector of a point. Then∮

S

dS? r = 3V + O(θ2) (9.88)

whereV is the volume limited by the closed surface. Since, one can formally write

?r = exp

(
1

2
ln r

)
(?)c exp

(
1

2
ln r

)
= r

(
1+ O

(
θ2

r 4

))
(9.89)

which gives Eq. (9.88).

9.6.3. The Gauss Theorem

In the noncommutative space, the Gauss theorem is generalized in the fol-
lowing star product form:∮

S

dS? an =
∮
S

dS[ax ? cos(n, x)+ ay ? cos(n, y)+ az ? cos(n, z)]

=
∫

V
dV ? div ? a (9.90)
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Finally, it should be noted that because of the noncommutative nature of
space, an absolute ideal concept of pure noncompressible liquid does not exist. In
this case, the volume of the liquid going out through any surface does not always
equal to the volume going in, and therefore full flow is almost zero up to the
θ2-order in the parameter of noncommutativity. Thus instead of the equation of
indissolubility of noncompressible liquid

diva= 0

we obtain an approximate equation

div ? a= diva+ O(θ2) = O(θ2)

for indissoluble liquid moving in the noncommutative space.
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