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Noncommutative Field Theory
Kh. Namsrai'-?
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We propose noncommutative space-time and a method to construct noncommutative
field theory in terms of a covariamtproduct Moyal algebra and to study those phys-

ical and mathematical consequences. We consider noncommutative quantum electro-
dynamics. The prescription involves calculating the trace-like averaging procedure of
noncommutative spacetime, leading to the nonlocal theory. From experimental data on
testing the local theory it follows that <7 - 10-32m?, where# is the dimensionful

scale of the tensdt,, characterizing noncommutative properties of spacetime arising
from low-energy limit of string theories.
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1. INTRODUCTION

We believe that a consistent relativistic quantum field theory of one-
dimensional objects, i.e., the string theory (Polchinski, 1998) is a more complete
theory with respect to the local quantum field theory (QFT) (Weinberg, 1995). One
consequence of string theories is that the space-time coordinates satisfy nontrivial
commutation relations (Ardalaet al,, 1998, 1999; Bankst al, 1997; Connes
et al, 1998; de Witet al,, 1988; Ishibashét al, 1997; Schomerus, 1999; Seiberg
and Witten, 1999; Witten, 1996):

[)A(uu )A(u] = ie/,w (11)

whered,,, is a constant antisymmetric tensor related to a backgroundBjglah
the presence of a D-brane in string theories.

The noncommutative geometry (Connes, 1994; Gracia-Benhdl., 2000;
Madore, 1999), the Euclidean field theories on some noncommutative geometric
objects like sphere, plane, and cylinder (Grossal, 1996a,b, 1997), the non-
commutative analog of a Minkowski plane (Doplictetial,, 1995; Snyder, 1947),

1Ulaanbaatar University, Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaan-
baatar 51, Mongolia.

2To whom correspondence should be addressed at Department of Physics, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; e-mail: ubu@mongol.net.

2609

0020-7748/03/1100-2609/ 2003 Plenum Publishing Corporation



2610 Namsrai

and also Aharonov-Bohm and Casimir effects within the framework of noncom-
mutative spaces (Chaichiatal,, 2001a,b) have been investigated.

Recently, noncommutative field theories (Chaichéaml, 2001a,b; Huang,
2001; Kimura, 2001; Susskind, 2001) have been extensively studied, and the
corresponding quantum mechanical problems have also received many attention
(Athanasiuet al, 1996; Bigatti and Susskind, 2000; Chaichigtnal., 2001a,b;
Dunneet al,, 1990; Dunne and Jackiw, 1993; Duval and Horvathy, 2000; Floratos
and Nicolai 2000; Gamboat al, 2000; Lukierskiet al, 1997; Morariu and
Polychronakos, 2001; Nair, 2000; Nair and Polychronakos, 2000). There are the
reviews in this field (Douglas and Nekrasov, 2001; Szabo, in press) and more re-
cent works (Banerjee, 2002, and references cited therein Bolonek and Kosinski,
2002; Jonke and Meljanac, 2002). The explicit presence of the cofigtant(1.1)
violates Lorentz invariance. It was shown that in such nhoncommutative Minkowski
spaces, the ultraviolate divergences of the QFT persist (Chaiehé&n2000a,b,c;

Filk, 1996) and unitarity and causality (Chaichianal., 2000a,b,c; Gomis and
Mehen, 2000; Seibergt al., 2000) are also broken.

Thus, we see that an attempt to construct self-consistent QFT directly on
noncommutative Minkowski space (1.1) encounters difficulties due to violation of
basic physical principles like Lorentz and gauge inveriances, unitarity, and causal-
ity. Here we try to study this problem. Main assumption is that in string theories
spacetime has more than four dimensions with the additional noncommutative ones
so highly curved as to be undetectable at current energies. While noncommuta-
tive four-dimensional fields become as residual or averaging effects at low-energy
limit of string theories with noncommutative spacetime satisfying commutation
relations (1.1).

The noncommutative models defined by (1.1) can be realized in terms of
a x-product. The commutative algebrs of functions with the usual product
(fg)(x) = f(x)g(x) is replaced by the-product Moyal algebra:

(F + 6000 = xp| 50,0y | by = 10900 + 511,910 + 06D (12

where{f, g} = 6,,(3, T)(9,0) is the Poisson bracket associated with. Such
associativex-products have been proved to exist as a formal power series for
any Poisson brackét, g} = 6,,(x)(d,, f)(3,9), with a most general x-dependent
0, (X) (Caetano and Felder, 1999; Kontsevich, 1997). To solve the problems of
the summability and unitarizability, we would like to act as follows:

1. Letd,, in (1.1) be constant defined by the formula

1 1
O = i—Q(VuVu - Vvyu) = i_auve (1.3)

in anyd-dimensional spacetime with the Dirgg-matrices.
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2. The Moyalk-product is replaced by the covariam}4-product:

(F0e0000 = 5™ {8 500001 || F00OmONcy 1.0

N(d)
Here all variables and trace are takeridimensional spacetime with
{yuu Vv} = Zg/,wa g;w =d (15)
Tr(l) = N(d)

whereN is a regular function ofl only andN(4) = 4.

Physical meaning of the covarias{-product (1.4) is that noncommutative
properties of spacetime take place in thdimensional case and our usual four-
dimensional spacetime and physical fields on it are defined as residual or averaging
procedure obtained by taking tracej)pfmatrices.

Our next goal is to show that this prescription allows us to construct non-
commutative quantum field theory free from the above-mentioned difficulties in
the context of noncommutative spacetime (1.1). Outline of this work is as follows.
In Section 2, we modify definition of the Moyatproduct in anyd-dimensional
spacetime and calculate trace of its noncommutativity. Section 3 deals with free
fields and their commutation relations, the Pauli-Jordan and Green functions in
the noncommutative spacetime (1.1). The next four Sections 4-7 are devoted to
the construction of the noncommutative quantum electrodynamics and to the cal-
culation of the vacuum polarization, the anomalous magnetic moment of leptons
and the electron self-energy by means of noncommutative algebra of field operator
functions onR*. Finally, we estimate restriction on the dimensionaful séaté
the tensor in (1.1). In Section 8 we study casuality and unitarity conditions for
the S.-matrix of the noncommutative field theory. Some geometrical and physical
consequences of the noncommutative theory are considered in Section 9.

2. REDEFINITION OF THE MOYAL %-PRODUCT AND TRACE
OF NONCOMMUTATIVITY OF SPACE-TIME

In this section, we shall first describe the Moyabroduct on anyd-
dimensional spacetim®Y. The commutative algebra, of functions onR¢ is
formed by functions of the form:

1
(2r)?

f(x) = /ddk d“* f (k) (2.1)

where

k-x = guXxx" = —x%k% + kIxt 4 ... 4 k471 x9-1,
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Then, the Moyal product is defined as
1 ~ ~ H _i g
(f x g)(X) — T)Zd / ddkj_ ddk2 f(kl)g(kZ) g (k1+k2)x .e 56Ky Ky (22)

whered,,, = 9%, f-constantg,,,-antisymmetric. This formula defines the cor-
responding noncommutatlve algebra of functidgson RY.

Alternatively, one can start from an operator algebra generated by the Her-
mitian operatorX, andX,, satisfying the commutation relations

[Xe, X0] =16,

The corresponding noncommutative algeld¢acan be given as the algebra of
operators of the form

f(x) = /ddk f(k) &> (2.3)

(2m)d
where
ikX = g, X*K”

It can be seen easily that the product in the operator algebra (2.3) possesses an
expansion in powers @f, exactly corresponding to the Moyal product.
One can see that the assumption (1.3) leads to the change

1 ) vy o~ .
(f * g)(X) = —(2 )Zd / ddkl dd ko {e—z.mwkl kz} f (k1)@(k2) el(k1+kz)x (24)
JT
where

Ouv = YuVv — Wu

Now the covariantX).-product (1.4) takes the form

1 4, 44
@mw/d“dbwm

x f(ke)G(ko) € Kathex (2.5)

e sk

(f(¥)c9)(x) =

Our next goal is to calculate trace in (2.5) for any ordef.ifror this purpose, we
use algebra of,-matrices ind-dimensional spacetime, defined by t' Hooft and
Veltman (1972).

Expanding exponential in (2.5) by the Taylor series and calculating trace for
each terms, one gets

1 30 Tr (vurs — vy KKy = N(d)O[(ky - k) — (k2 - ka)] = O
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2

1
1 Ly, v o
EOZN(d)[g/wgvp — G4 %0] (kll ks - kka)
—[(k1 -k2)? — k2k3] - 62N (d) (2.6)
03
3. ?:)LI % Tr[0,00,5603, Ky Ky ki kS kkkx

1
?93 N(d){_gup[guxgak - gvkgax]
+ gua[gvxgp)» - gvxgpx] - guk[g\)pgax - gvagpx]

+ gux[gvpgak - gvagpk] klfkﬁkfkg ki\kf

593 N(A){ K (kG(ks - k) — (k2 - kn)K3)

+ (ke - k) (k2KE — (ks - k)?) — K2(KB(k - ko)
— (ke - kn)kB) — (ki - k) (KGKE — (k1 - ko)2)} =0 (2.7)

To see more or less approximate form of the Taylor series, we calculate
yet one trace 08, 0,, 05, 0us-product terms. After a straightforward but
tedious calculation, this trace then becomes

o 24Tr (0,000 por 03 T 1K1K KO KS KK K K

1
= ﬁ“N(d){—gup[gw(gmgw — GaTy) — 9VAM(GopUya — GoaUyp)

+ 00y (T — FoaT18) — Gva(Goi Ty — oy Tip)

+ 008(Fo1.9x0 — Yox Ba)] + Yo [90p (9595w — GraTxs)
= 00 (985 — GpaTx8) + 9o (9o Gra — GoaUrp)

— 090298 — 9ox 918) + 908(902.9xa — Yoy Grer)]

— 011[9vp(9o89xe — YoaUxp) — Gvo (FppTxa — YpaUxp)
+ 0y (9p%a — GpaTop) — Gva(9psYox — Yoy Yop)
+908(9peox — Ypx Yoa)] + Gux[90o(FopGra — Yoo Gra)
— 0o (9ppPre — GpaDrp) + 903 (9pp Yo — Ypa Gop)

= 0va(908905 — 9p2.908) + Gvp(Fpa Gor — GpiGoa)l

= 0uel99(9529x8 — Yox9i8) — Guo(Fprxp — Gpx Tip)



2614 Namsrai

+ 903 (9890 x — Gpx Gop) — Yux (9pp9os — FprGop)

+ 98(9px 9or. — Y2 %o )] + 9upl 90 (%02 Gra — Yoy Grr)
= Ovo (9p29xe — Gox Gia) + Boa(Fpaox — GpxGoa)

= 0x(9pabor — 9o2Goa) + Goa(Fox Gor — GorGo )1}

v log o 94 2
x ki koK) kS kiks kS kzﬁ = N(d) [(ky - k2)? — kfk%] (2.8)
Thus, one can see that trace of expression
1
lg = WTr [e20kik) (2.9)

due to noncommutativity of spacetime is approximated by the elementary function

ly = cosh(e,/ (K1 - ko)? — kfkg) (2.10)

at least up to desired order @t.
In accordance with the formulas (2.9) and (2.10) the covariggifroduct
(2.5) acquires the form in the momentum space

(F(0() = 7 )zd / d“klddkzcosh@\/(kl )2 - k2k2>

x f(ka)g(ko) &> (2.11)

or in the coordinate representation

(f()e9)(x) = COSh(9\/ ) Dy) FOA9()ly=x (2.12)

where

0 - 92 -
X _ _ _ 2
a9, = P <_ax0' V) and 0y = 7502 \%

We see that residual effect resulting from the averaging procedure (taking trace)
on the noncommutative spacetime leads to the nonlocal commutative alyebra

of functions with the mixing product like (2.11) and (2.12). We call this type of
correlation nonlocal product.

3. OPERATOR PRODUCT OF NONCOMMUTATIVE
QUANTIZED FIELDS

In this section, we investigate commutation relations and Green functions
of noncommutative quantized fields. We consider here only scalar particles. The
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*-product of quantized scalar fielg$x) defines as
W00+ 900 = s [ e RGN @)
and its covariant¥).-product reads
((X)(*)ce(y)) = Cosh(G\/ (3% - 8Y)* — O - Dy) p(X)e(y) (3.2)

The commutator of noncommutative field operatos) takes the form

Dy (x — ¥) = e(X)(*)cp(y) — ¢(Y)(*)ce(X)

= cosh(O\/ 811 Dy) A(X—Y) 3.3)
where
' 4 O\ s (12 2y ik
A(X) = (2n)3/d k e(k”)8(k” + m?) e™"**
is the Pauli-Jordan function of the scalar particle. From this it follows diretly,

Do(x —y) = A(x —y) (3.4
since cos G= 1.
Similar definition for the Green function of the scalar particle holds
DE(X — y) = (O T[p(x)(¥)ee(y)]10) = ¢(X)*)et(¥)
= cosh<9\/(a>’f . 8}{)2 — Oy - Dy) A°(x —y) = A°(x—y) (3.5)

whereA¢(x — y) is the usual local Green function of the scalr field. It is obvious
that all 2-point functions of noncommutative quantized fieds) coincide with
their local ones:

DE(x) = AT(x), D2M'™{x) = A%'e{x), DS(x) = AS(x)  (3.6)

We will show below that nontrivial contributions due to noncommutativeity of
spacetime appear only in the case of interacting fields. In other words, interaction
Lagrangians and Feynman diagrams are changed in accordance with the definition
of thex-product of noncommutative quantized fields. Let us consider, for example,
the ¢3(x)-theory. Its Lagrangian takes the form

£o= 507 000+ 60 % 000 (37)

S-matrix for this noncommutative theory defines as

S =T *exp{i / déx Lg(x)} (3.8)
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We write theS,-matrix in the momentum representation. According to the
Wick theorem after taking the normal form, termrmth order of the scattering
matrix can be expressed by sum of terms

/dxl.../dxn Ko(Xa, ooy Xn) ke ok @(Xi) *-- - @"(Xj) % - %0 (3.9)

where coefficient functions;(x, ..., X,) correspond to internal lines of the
Feynman diagrams and are formedssgroducts of the Green functions:
*AX — Xj)* AXj — X ) * - - - (3.10)

While a normak-product
Dk k(X)) Kk @ (X)) Kk (3.11)

contains free operator fields corresponding to external lines of diagrams.
The structure of the matrix elements of t§ematrix has the general form

O, xS xD (3.12)

atorsa™ (k):
D k.. = a7 (ki)ag (k2) ... a7t (k) P° (3.13)
The matrix element
<I>fp,m Tk ok QX)) Ak @ (X)) Kk I D (3.14)

is represented in the form of theproducts resulting from commutations between
operators

¢~ (x;) with a*(k) = / dk® 0 (k%)a** (K) (K2 + m2)v/2k0
and
et (%) with a* (k) = / dk® 9(K%)a*~ (K)§ (K + m?)v/2k0

Thus, after carrying out commutations, the matrix element (3.14) is indeed ex-
pressed by the-product:
(271,)73/2 e*iklxl * (27_[)73/2 efikzxz o w (27_[)73/2 efik’lx’1 * (27_[)73/2 efik’zxé oo

of plane waves.
It is easy to realize the-productS;-matrix elements in Feynman diagrams.
For example, the following matrix element

~ /d“x/d“y eP R A(X — y) x A(y — X) » €PY (3.15)
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Fig. 1. Primitive Feynman diagram in noncommutative
scalar g.p(x) x 9(x) * p(x):-theory.

corresponds to the Feynman diagram shown in Fig. 1, in x-space. In the momentum
space it takes the natural form

g 1
) = st [ ok

1 1 1
X exp[ 00, K" + 2Ocrp(,k"(k —p)F — EGao,ﬁp (k — p)ﬁ]

» 1 1
kZ+m2—ie (k—p)2+m2—

(3.16)

Taking into account the identity,,, p* p* = o,,k*k" = 0 and calculating
trace of they,,-matrices, one gets

My(p) = TrIi(p) = (2 Wi / d*k cosh 9\/(k D)2 — p2k2)

1 1
X
k24+m? —ie(k— p)2+m?—

(3.17)

Here rapidly oscillation and sign variable function ca8l can be expressed in
terms of the Mellin representation:

1 f'“” ge b 0FI(k-pP+ PR
20 Btioo sinwé @+ 2%)

cosh(e (k- p)2— p2k2)
(3.18)

whereg > 0 is any number. Then, we see that after passing to the Euclidian or a
Wick rotation, whole integral (3.17) is converged

/ dkkk K] f<0 k=+k?
0

In next sections we will study Feynman diagrams in the nhoncommutative
guantum electrodynamics.



2618 Namsrai

4. NONCOMMUTATIVE QUANTUM ELECTRODYNAMICS,
THE LAGRANGIAN DENSITY, COUNTERTERMS,
AND GAUGE INVARIANCE

In this section, we shall define the Lagrangian density and proceed to carry
out some techniques with theproduct to show gauge invariance of the theory of
charged leptons that interact with the electromagnetic field in non-commutative
spacetime. For noncommutative spinor (electron) and photon fields the Lagrangian
density is taken in the form of theproduct:

1 *LV m . L
L= —ZFB" * Fauw — ¥a(X) * [ (0" + i eg Ag(X)*) + mg] va(x) (4.1)
where
FAv = 91 AL — 9" AL — i eg(Af « AY — A” x AX)

and g are the bare (unrenormalized) nhoncommutative fields of the photon and
electron, and-eg andmg are the bare charge and mass of the electron. As in the
local field theory, we introduce renormalized fields, charge, and mass:

v =2,"ys, A =Z7YPAL (4.2)
e= Z;/ZeB, m=mg +ém (4.3)

with the constantZ,, Z3, andém. As usually, the Lagrangian may then be written
in terms of renormalized noncommutative quantities

L=Ly+ L1+ L> (4.4)

where
Lo = _%F*lw * Fu — \;* [.0" + mly (4.5)
L1 = —ieAX) * P (X) * ¥ ¥ (X) (4.6)

and/., is defined as a sum of “counterterms”

1 —
Lo=—5(Zs = DF" x By = (Zo — D)y ¢ [y, 0" + mly

+ Zodma Y x Y —i€(Z2 — DAM) * Y (X) ¥ Y (x) (A7)

Notice that all of the terms if, are of second order and higher orderjrand
that these terms ensure to cancel the ultraviolet divergences that arise from loop
graphs in the noncommutative quantum electrodynamics.

We shall now show that the Lagrangian density (4.1) is invariant under the
noncommutative analog of gauge transformations withwtpeoduct:

Ye(X) = €% yp(x), Yg(x) = Pg(x) e (4.8)
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and

A0 — | Ag0 - 50 |

% IXH

@M N (x) M0 ieix(x) N dA(X) PSP
B XK

~ (4.9)

with an arbitrary function.(x).
Taking into account formulas (4.8) and making use of the differentiation

i L OA(X) ; ad
Pl — e|)\(x) i / e|)L(x) l
14 ol * Y+ * —8xﬂw

one gets

V() * [7,0" + mlys(x) > —Yg(x) xeH %

% |:)/;L< |k(x) ( ) w ( )+e|A(x) )a(ﬂw/(x)

+ieg AL(x) x €400 & 1//’B(x)) + mg €2 & wg(x)} (4.10)

where the noncommutative photon fieéd (x) is transformed by the formula (4.9).
Substitute it into (4.10) foAz (x)-field and prove its gauge invariance

_w_B(X) [Vﬂ (3“ +i eBA (X)*) + m] WB(X) N WB(X) « e—l/\(x)
% |:yl/-( |A(X) ( ) w ( )+e|A(x) qu/(x)
Tieg €M« A(x) % e 10 4 20 4 y/(x)

. X . . .
i €40 —aa:;() x @100 d A0 lﬂé(X))] + mg €™« y'(x)

= ' (x) * [y, (8" +1es A% (X)%) + m] Y (x) (4.12)

where we have used the identay' *®) » =) = 1.
It is natural that the field strength

FL" = 0"AL — 0" Ay —iep (Ap * Ay — A * Ap) (4.12)
in (4.1) and (4.5) is given by a non-Abelian formula which is invariant with respect
to the transformation (4.9), where
dA oA dA oA

X axy T axy T axk




2620 Namsrai

and

A A
9 *A";ﬁa—*A”
axY oXH

If the commutator

oA oA
[0,4, xA*] = * A* — A* %
Xy XK

is equal to zero, then the last term in (4.12) is disappeared for noncommutative
photon fieldsA’, (x).

One can verify that the field strength (4.12) is valid for a more general case
when both the transformation functiarix) and the gauge fieldé*(x) possess
an internal symmetry defined by their matrix valugs) and A*(x). However the
nonlinear termin (4.12)

(AL * Al — AL x AY) = (2r )8,/dAPO|4 e (Prax
x[eée(’””q p” ezgaﬁ‘ﬁq pﬂ]Av(q)Au(p)

goes to zero when we will use the covariaf)t{product instead of the usual Moyal
*-product between them.
Below we use the following type efproducts and those covariant versions:

f(x) % g(x) = / ddp ddq e 200w P a" (P f(p)5(q),

1
(27-[)2d

f()* F(x —y) »g(x) = / d’p d'k diq e 207 Pk +360,0k a0

(2 )3d
x @PxHay+Hk=Y) £ ) F (k)§(q)

and
f(X)*x F(X — y) *» G(g — X) » g(x) = & )4d /ddp d%; d%%, d’q
1 1 1
X exp[—EQG,w p“ky + Eeaﬂkfk}z\ — éeapakgq"}

x @PEHIHICHO () () B (k)B(A)

and so on, where,, = v, % — Y Vu-
We now turn to calculate Feynman diagrams in the noncommutative quantum
electrodynamics (NQED) defined by the Lagrangians (4.5), (4.6), and (4.7).
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Fig. 2. The one-loop diagram for the vacuum polarizatior \</

in noncommutative quantum electrodynamics. P-q

5. VACUUM POLARIZATION

The Feynman rule in NQED is same as in the local QED with only difference
thatin vertices of diagrams factors exdé(@a,w p*qg') are arisen from the products
between plane waves in external lines and the Green functions in internal lines.

In the coordinate space, the matrix element of Senatrix in NQED, cor-
responding to the diagram in Fig. 2 has the form

— i DA * (=T Y S(X = Y) x ¥ S(Y — X)) * A(Y)
== D AUX) X T (X — y) x A(Y) -
where
M*(x —y) = —i & Tr{y" » S(x — y)y* * S(y — X)) (5.1)
Here thex-product
e 10X 4 @=1P(x=Y) | a=i(P—a)y—X) , day

leads to the form factor in the momentum space

1 1 1
exp[—éea,wq“ P’ + 500,00 (P — a)" + 500,(p — )’ pﬂ

1
= exp(—ééow p”q") (5.2)

and therefore the vacuum polarization (5.1)pHspace reads

S [ e THIS P M (P— 6) + mlyY)
Gy | P e
(5.3)

n*(q) =

Taking trace of (5.2) and keeping term of the orde¢%fone gets

—i ezfd“ Tr{[—i p+ m]y*[~i(p— ) + m]y’)

I1°°(q) = (2n) (P2+m2—ie)((p—q)2+m2—ie)

2
x [1 + %((p -g)* — pzqz)] (5.4)
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Next we would like to act as follows from the local theory.

1. Use the Feynman parameterization
1
(P2 +m?—ie)((p—q)*+m? —ie)

1
= f dx[(p—gx)?+ m? 4 g?x(1 — x) —ig] 2
0
2. Carry out shift of the variable of integration in momentum space
p— p+0ax
3. Calculate the trace as

A7 (p,a) = Tr{[—i(P+ax) + mly”[~i(p—a(l—x)) + mly”)
<1+ 5w a7 - )| = 4o+ @0r(p - a2 -y
+(P—ax)(p—a(l—x)g” = (p+ax)’(p—a(l—x))’
+m?g”’] [1 + 9—22((p ) pzqz]

where the factor [ - )2 — p?g? due to noncommutativity of space-
time is invariant with respect to the shifs — p + gx. Our next step

is called a Wick rotatiorp® — —ip?, d*p — (d*p)e = dp'dp?dp3dp*

and all scalar products are evaluated using the Euclidian @orn=
alb! + a?b? + a®b® + a*b* with g* = —iq®. Also, as in the local theory,
g”° can be taken as either the Kronecker dé&tfa with the indices running
over 1,2,3,4, or as the usual Minkowski tensor, with the indices running
over 1,2,3,0. The integral

eZ 1
(@) = s /0 dx f (@ P)eLp? + M2 + Px(L — )] 2AL (p, Q)

(5.5)

is badly divergent, which is calculated by using the dimensional regula-
tization technique introduced in 't Hooft and Veltman (1972) based on a
continuation from 4 to an arbitrary numbetiof spacetime dimensions.

For calculation purpose, we take into account the following formulas in
spacetime.

1. In addition to (1.5) we have

Yive=d, vyt =2-d)y (5.6)
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N o o s~ DN

10.

11.

Trl = N(d),  Try,y = N(d)gu, (5.7)
Tryuyo¥eVp = N(A)[9uvGus + GvaGup — GuaGu] (5.8)
VWYoVuVo?' = @—=A)pVuVo + 20uYe¥p — VoYovu)  (5.9)
VYeyuy"y" = (2—d)’y, (5.10)

p*p’ — p’g/d (5.11)

PP PP’ — (P)[9"'9” + 99" +¢*°g”]/d(d +2) (5.12)

Further, we use the well-known formulas:

. d*pe — Q¢k?1dk, wherek = ,/p? andQq is the area of a unit sphere

in d dimensions
Qq = 27921 (d/2) (5.13)

. There is an infinity in the one-loop contribution in NQED, arising from

the limiting behavior of the Gamma function
d 1
r{2-—= —_— — Y, 5.14
(2-3)~ e-am (544
wherey is the Euler constany;, = 0.5772157.
Make use of the limiting behavior

lima’lime'" =1+¢lna (5.15)

e—0 e—0

where as usual we choose= 2 — d/2, ford — 4.
To evaluate the resulting integral like

k2)n
/d4 [k2+v2]m

with (k? + v?)™ coming from the combined propagator denominators in
Feynman diagrams for NQED, ank?[" coming from the propagator
numerators and vertex momentum factors includkg){ — kg due to
noncommutativity of spacetime, we use the well-known formula

/"" (KT _ -am[0/20(m-1/2)
0 [k2 + v2m 2r(m)
wherel = d + 2m. In this work, we used this formula in the special cases
nN=0,n=2,n=4,andn=2,m=3.

(5.16)

12. Finally, we need some properties of the Gamma-function

(2 =rl+2
dinT'(z) T'(2
dz @

V1(2) =
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() = %F(l—f-s) = % —y + 0(e)

1
M(—1+¢)=- [E +1—-y+ O(s)i|
or in the general case,

P(ente) =" nl)n

[ <1+ ! +o 4 1_ y) + O(s)i| (5.17)
g 2 n

The above-listed formulas are very useful to construct gauge invariant and finite
NQED in any order if. Here we are restricted in its second ordetinAfter such
matematical preparation, we turn to study expression (5.5) for vacuum polarization
diagram.

To carry out angular averages in (5.5), we drop all terms that are ogd in
and replace the terms that have even numbersfaictors with using (5.11) and
(5.12). Also, after writing the integrand in this way as a function onlypfthe
volume elementﬂgE is to be replaced in accordance with (5.13). Thus, expression
AL’ (p, 9)/4 acquires the form

Ay’ (p, q)/4

2
= [—%gp" +20°g°X(1 — X) + (K% — g°x(1 — X))g** + ngp"}

+9_22 {1Tq W 2%2 ot K - d(jlj: 2) quqa}
(5.18)
where k = p),
k277 = K’[20°9°X(1 — X) + m*g*°] — k’g*x(1 — x)g”” + k*g"”
= K’[29”9°x(1 — x) — g*x(1 — x)g"” + m*g*’] + k*g"”
We now use integrals of the type of (5.16):

1) f0°°dkkd‘1[k2+v2]‘2= 1(u2)-—2r( )T(2-9)
2) [ dk KD1K2 122 = 1122 1r (1+ 9) 1 (1 - 9)

1
3) fooo dk k(d+4)—1[k2 + 1)2]_2 — %(UZ)%F (2+ %) r (_%)

Then, expression (5.5) consists of two parts

po po po
[T =]]@=]]@ (5.19)
10

local
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where
4€°Q d
Mital® = 5 )fF( ) (2——> [a°9” — q?g""]

X /1 dx - (1 — X)[m? + g2x(L — x)] 22 (5.20)
0

is the usual local quantum electrodynamical result and

22¢? 1 d d d
() = %(ZTS)Z‘?fO dx{F<2+ E)F <—§) [m? 4+ g?x(1 — X)] 2

1-d, . 21+d o, 4
X[dqg t2a52' 99 T qary 9
2 2 ——l 1- d 2
1+ 1—— [Mm” +g°x(1 —x)] 2 g 4
x[20797x(1 — X) — g°x(1 — X)g*° + ngpg]} (5.21)

For the last formula, we use the following transformations:

1) 1-d 21+d) 4 dd — 1)
d dd+2) dd+2) (d+2d

") ()2

and therefore, one can combine first terms in the first expression of (5.21)
with its second whole expression to give

3) r<1+g>r<1—g> <1dd>[m +g%x(1—x)]et

x [29°979x(1 — x) — 2g*x(1 — x)g"’]

Thus, expression (5.21) takes the form

po, o 2€2Qq 6% (1 d d 4 ¢
5@ = Gy '7/0 dx{r<2+§>r(_§> d@r ™ TaxE-)

(29" — qPq°) =T <1+ g) r (1 - g) <1%d)

x [P + g?x(1 - x)]* - 202(1 - (a2 — qpq”)} (5.22)
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After little algebra of the Gamma functions

(2)-25 () 92
92 (9

2€°Qq 0% , . d d
T 2@ —wor (1+3)r(3)

x /1dx [E[m2 + (1 — X)]2 + (1 — d)g?x(1 — x)
o Ld

and

one gets

ng () =

x (M2 + g2x(1 — x))‘él} (5.23)

Thus, we find vacuum polarization in NQED
4€7Qy d d
1°°(q) = r{=)r(2-=)(@Pq° — q°g”
(a) 20y <2> ( 2)(q a9’ —q°9”)

></ldx[m27L 2%(1 — x)]2 2 x(l—x)+9—2 L
0 q 2 2-d

x (M + g?x(1 = X)) [g(m2 +g2x(1 — x)) + (1 — d)g?x(1 — x)} }

(5.24)
We note the very remarkable result that this contribution satisfies relation
0,I1”°(q) =0 (5.25)

that is the basis of the conservation and neutrality of the electric current in NQED
in which dimensional regularization gives also this result of the conservation of
current that does not depend on the dimensionality of spacetime.

Owing to (5.14) the Gamma functidi(2 — 9) in (5.25) has singularity at the
limit d — 4. Moreover, as shown in Section 4, there is another term that must be
added tol177(q), arising from the term-3(Z3 — 1)F)" « F?, in the interaction

6
Lagrangian. This term has a structure like Eq. (5.24)

n7 (@) = —(Zs — 1)(@°g” — q°q°) (5.26)

so as to orde€?, the full [1{” has the form

% = (9°9” — q°q”),4(q%) (5.27)
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with

My(q?) = —i;zf)sz (g) r <2 - g) /Oldx[mz + o2x(1 — x)]%*z

2

0
+ m(mz +0?X(1 - X))

X {x(l —X)

x [2m? 4+ g*x(1 - x)(2+d — dz)]} —(Z3-1) (5.28)

As in the local QED, the definition of the noncomutative renormalized electro-
magnetic field requires thai, (0) = 0. Therefore, to ordes?,

_ 4€2Qq d d 28 2 1 02
z=1- gt (3)r(2-2) o0t o[-+ gggs o]

x [(m2 FPx(1—x)):2— (mz)%*z] (5.29)

Now we can remove the regulatization allowiddo approach its physical
valued = 4. There is an infinity in the one-loop contribution, arising from the
limiting behavior of the Gamma function (5.14). According to the local QED a
finite part ofIT,(g?). is extracted from the mathematical prescription

9s(a?) »  19T,(q)

fry2 2 4
IT =1II — I1p(0) — . . 5.30
0 (d%) = Ie(q°) — T4(0) 0 o 2000 oo q" (5.30)
A straightforward calculation gives
1) My(0) = I - (MP)?72(x(L — x) + 62 - 2m),
2)  3My(g?) 2
30]2 q2=0

= {(g - 2) (MA)2 73 x(L = X) + (X(L — X) + 62 - 2m®) + (m?) 2

x [02 - x(1 — x)2m? 4 6% - m?(2 +d — d?)x(1 — x)]} q?,  (5.31)

qt=1 {(g - ><g - 3)(m2)‘34 -X3(1 - x)?
0?=0

x (X(1—x) +62.2m*) + 2 (% — 2) (M?)2=3 . x(1 — x)2m%32

and
3)  s(a?)
g4

X (4+d—d?) + 2m?)2 262 . x2(1 — )22+ d — d2)} g (5.32)
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where

- 0?2 1 46252(1 d
=i T 2 () (2">/dx

The poles atl = 4 obviously cancel ifil;(g?), because fodl = 4 both fn? +
g2x(1 — x))2~2 and M?)2 -2 have the same limit, unity (see formula (5.15)). For
the same reason, the tery in I'(2 — d/2) cancels in the totdll(g?), although
y it does make a finite contribution @; — 1. There are other finite contributions
to Z3 — 1, that arise from the product of the polelif2 — d/2) with the linear
terms in the expansion &24I"(d/2) aroundd = 4, but these also cancel in the
total [T, (q?).

The only terms that do contribute @,(q?) in the limit d — 4 are those
arising from the product of the pole iR(2 — d/2) with the linear terms in the
expansion offi2 + g2x(1 — x))2~2 and M2)%~2 in powers ofd — 4:

(M + g?X(1 — X)) 272 — (M?) 22 (g - 2) In (1 SRR X(r:ﬁ_ X)>

due to the formula (5.15) and are also those arising from the préd@ct d/2) -
(4 —2)in (5.30).
Finally, all these simpler calculations give

e [t 62
Iy (?) = > dx { [x(l —X) — E(Zm4 — 8m2g?x(1 — x) — 10x?(1 — x)2q4)]

2
In ( + 9 X(nlqz )) + %(Zmzqzx(l —Xx) — (1 — x)2q4)} (5.33)

The physical importance of the vacuum polarizationin NQED can be explored
by considering its effect on the scattering of two charged particles of%sﬁl‘he
Feynman diagrams of Fig. 3 make contributions to the scatt&mgatrix element
of the form

1,2 1,2) = e 10 (P (27) O5%(p; + p) — py — p2)

les(2n) Ty u(po] | -1 20 | exte ey (e
(L2 1, 2) = e 2 (PP (2m) 06%(p; + py — p1— o)

x[ex(2r) (L)Y “u(py)] [—i(zn)—“q—lz]z

x[i (20)* (09" + 9.9.)TTs (q)][ €2(27)*U(Py)y " u(p2)]
where the factor exp{%Gapa(pl + po)? py]is arising form thex-product:

@ iP1X , dP2X , a=ia(x=Y) | a=iP1Y | P2y
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1 1 1 1
(@) &
Fig. 3. Two diagrams for the scattering of charged particles in NQED.

In the momentum space it takes the form:

1 1 , - 1 - ,
exph@% Py Py + 56950 p5(Ps — P2)” + 50065 P (P1 — py)’

+ %9% Py péx} = exp[—%ea,m(pl + p2)’ p’f}
ande; and e, are the charges of the two particles being scattefedqn?) is
calculated using foe in Eq. (5.33) the magnitude of the charge of the particle
circulating in the loop in Fig. 3; ang¥ is the momentum transfer= p; — p; =

P, — P2. Using the conservation propeyu(p;)y*u(pi) = 0 the two diagrams
together yield arg-matrix element:

b ’ —i €16 _1 Cpo o pe 2
§P0 2~ 1,2) = 555 e o PTRIRL4 T(0°)]
x84y + P5 — P — P2T(PYY " u(PL)ILT(P)7, u(p2)]
(5.34)

In the nonrelativistic limit,u(py)y°u(py) ~ i85, While u(py)y'u(ps) ~ 0, and
likewise for particle 2. In this limitgq® is also negligible compared witlg]|.
Equation (5.34) in this limit becomes

—ie P
§7P1,2-1,2) = 4;21;2 2000 (PP P [1 4 TT,(q2)]
X8(4)(p£|_ + p/2 - pl - pZ)Soiolaaz’az (535)

This expression may be compared with tBenarix in the Born approximation
due to a local spin-independent central potentiél):

UL, 2 1, 2) = —27i8(E; + Ep — Eq — Ep) e2on(BitEEL
*xTgorn(1, 2— 1/, 2) (5.36)

Teom(1, 2= 1, 2) = 8510, 8040, / d3x; / A%V (Ix1 — X2|)

x(27) 8 e 1P 4 @ 1P, dPra P22 (5 37)
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Settingx; = X, + r, this yields

—i
TBorn ~ Haa{al‘saz/az e 290” Prié] S(pl + p2 P1— pZ)

2
< [@rvee |14 Gl @+ - pia+ 22| 639

whereq = p; — p} = p, — P2 and & = p1 + p2 = p; + p, are the momentum
transfer and the total energy of the system. Comparing this with Eq. (5.34) shows
that in the nonrelativistic limit the diagrams of Fig. 3 give the sa®anatrix
element as a potenti&l(r) such that

. 1+ Ty(g?
/d3r V() s e i g g ) q;(q )
or, inverting the Fourier transform
€1 & d3 éqr 1+ He(qz)
(277'-)3 2

Equation (5.39) is to first order in the radiative correction the same potential
energy that would be produced by the electrostatic interaction of two extended
charges distributiory oy (X) ande;py(y) at a distance:

V()= (5.39)

V() =eie, [ oix [ oty 200100 (5.40)
where
e2 2
po(X) = [ 7647[2(92”)3 (1 m2v2 4 fov4>]83(r)
oo | CamuE e (541)

Herell1,(g?) is given by the term with In (% %) in (5.33). Note that

/d3r oo(r) =1+ :—ZLI'IQ(O) =1 (5.42)

so the total charges of particles 1 and 2, as determined from the long-range part of
the Coulomb potential, are the same consteqéside, that govern the interactions
of the renormalized electromagnetic field in NQED.

As in the local QED, foir| # 0 the integral (5.41) can be carried out by a
straightforward contour integration:

2 4 .
) =~ 3/ dx- x(l—x){ o [% + 4?92
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—5x(1 — x)%“]} <1 . ) exp( —mr )
VX1 —X) VX1 —X)
On the other hand, the integral @f(r) over allr equalst+1. Thereforep,(r) must

contain a term (& Ny)83(r) that is singular at = 0, with N, chosen to satisfy
Eq. (5.42):

@ (1 ,., 3., @ [df
N9_764n2(2n)3<_§mv_ﬂ)v) 83 8
axox@ oo lio CT M L a2 - sx - 0
R e e P Rl |
VXA =X) P VXA =X) '

The complete expression for the charge distribution function is then

1 2 4
po(1) = (14 Np)s3(r) — %fo dx- x(1— X) {1— o [L + 422

8 X(1 — x)
-sx(1 - x)9] <1 + %) exp(%) (5.44)

The physical meaning of this result is that a bare point charge attracts of charge
of opposite sign out of the vacuum, repelling their antiparticles to infinity, so that
the bare charge is partially shielded, yielding a renormalized charge smaller by a
factor 1/(1 4+ Ng).

The vacuum polarization effect of Feynman graph (b) in Fig. 3 is to shift the
energy of an atomic state with wave functigifr) by

AE, = /dsrAV(r)*[w*(r)*l/f(r)]
= ﬁ/d% /d3q/d3Q/d3keiq’*e*”" xe
<8V@F0F(Q) = s [ [da [ [ ok

1 1 el o
X eXp|:§90Mqﬂkv + EQU'Wkaa] AV(q)I//*(k)W(Q)e'qr*'kH'Qr

(5.45)
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Here

1
A= exp[ Qa.Jq ki + Zeanmk”Qm}

1
_exp[ 90,1(q +Q)k]] 0ij = 0i0j — 0j0j
(0ij are the Pauli matrices)

and

() = 7T = cosh(0/(@ +Q) - k2 — K- (g + Q)

N(d)
We find

AEy = cosh(é?\/(%x . %)2 — Ay - Ay> /d3x AV WY (X)Ix=y (5.46)

Here AV (x) is the perturbation in the potential (5.39):

(2;1)3 /ds [He(q )} (5.47)

We know that the effect of the vacuum polarization is very much larger for
orbital angular momenturh= 0 than for its higher values. Fér= 0 the wave
function is approximately equal to the constantifdess than or of the order of
m~1, so Eq. (5.46) becomes

AV (X) =

AE, = |w(0)|2fd3rAV(r) (5.48)

since cosh @G= 1. Using Eqgs. (5.47) and (5.33), the integral of the shift in the
potential (fore; & = —Z€) is

/d3rV(r) = —Z€1,(0) (5.49)
Direct calculation of Eq. (5.33) gives
, e [t x2(L—x)?  6°m?’x(1—x) 6°m?
1‘[9(0)=F/ dx|: -~ — 8 + 8 x(1—x)]
and therefore,
4 2
—ZAM0) = ——Z > ¢

T15°me YT ax

We see that an immediate contribution to the energy shift due to noncom-
mutativity of spacetime is zero at least up to ordestf Therefore, in states of
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hydrogenic atoms with= 0 and principal quantum numberthe wave function
at the origin is

2 (Zam\*?
0)= — 5.50
o= (57) (520
so the energy shift (5.48) is almost equal to the local one
4 Z%°m 4
AE = BT + O(0%) (5.51)

Finally, notice that although vacuum polarization contributes only a small part
of the radiative corrections in ordinary atoms, it dominates the radiative corrections
in muonic atoms, in which a muon takes the place of the orbiting electron.

6. ELECTRON SELF-ENERGY IN NONCOMMUTATIVE
QUANTUM ELECTRODYNAMICS

The complete electron propagator in NQED is given by the sum

[—i@m)*S(p)] = [-i(27)*S(p)]
+ [—i(2m) " S(P)[i (27 )* S (P)I[—i (27) *S(p)] + - - -
where

—ip+me
pPP+mi—ie

S(p) =
The sum is trivial, and gives
S =[ip+me—2y—ie]™ (6.1)
In lowest order there is a one-loop contributiordtg, given by Fig. 4:
— Y x Be(X = Y) x () :
where
Zo(x —y) = =1 AKX — V) x ¥ S(X = y)v,

Thex-product:
e—in * e_ip(x_y) * e_i(p_q)(y_x) * eiqy

Fig. 4. The one-loop diagram for the electron self-energ\@ ST g
function in NQED. x pP—g S g
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leads to the factor
g 200" P’ (6.2)

in the momentum space.
Similar to the vacuum polarization, the electron self-energy function has the
form

ie? 1 (=g +ip+ m)yy
So(@) = [d“ = [ i

(2r)4 —ie | (Q—pP+m2—ie
2
<1+ Sapar - et | 63)

here and below we have used notatior= me.

Making use of the Feynman parameterization formula, invariance property
of the factor pg)? — p2qg? with respect to the shifp — p + gx and the formula
(5.6), one gets

ie2

g(q) = )¢

1
/ dx/.d“p[(p—qx)2+q2x(1—x)—i-m2x—is]72
0

2
<100 - X2 &)+ md] |1+ 5 (pa) ~ 0 |

Going to the Wick rotation and using tidedimensional regularization procedure
as before, we obtain

@xd_ /g
(@) = - 2% (

e 5) r (2_ g) /Oldx[—i(Z—d)(l— x)§ + dni

2

x[g2X(1 — X) + m?x] 22 [1 + 07 . %qz(qzx(l —X) + mzx)}

(6.4)

The interaction (4.7) also contributes a renormalization counterterm
—(Z2 = 1)+ m) + Zdm in Xy(p) with Z, andSm determined by the con-
dition that the complete propagat8)( p) regarded as a function off should have
a pole at § = —m with residue unity.

To remove the regularization, allowirto got to its limitd — 4, we act as
follows. We calculate the quantifjy(q) and its derivatives

ED> 32% RN 3°%
9iq"  a(ig)?’ aGq)e®  aiqg)y®
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at the poini § = —m, and use the Taylor series:
D . 1 923 .
Zo(P) — Zo(P)lig=—m + 1 ﬁliq?m(lq +m) — Ewliq?m(lq +m)?

1 9*%
413(i§)*

1 335,
319(i§)3
1 853,
- §W|qu
Since, one can write

lig=—m(i@ + m)® — lig=—m(iG + m)*

_m(@iG+m)° (6.5)

(ig+m)?=(m+ig)[2m] + m [—mq—rﬂ ,

(ig+m) = m+id)[—g°+ 3m?] + m[—2m? — 2¢?],

(i§+m)* = (m+ig)[am® — 4mq?] + [W — 4m(g® + mz)} ,

(9 +m)° = (M+i6m* + g%)? — 4m*(q* + m?) + 2m(4m° — 4mc?)]
+m[(4n? — 49%)(—q” — m?)] (6.6)
then a renormalization counterterm3i (p) has the general form
—(Z5-1)(g+m)+2z5-m

as should expected. It turns out that the poled at4 cancel in the definition of
(6.5). First, we separate the local value of (6.5):

2&’n? 1 1-x*
Bocal@) =~ 752 [Caxf2- 225 e m)

2| mx? 6
ig(1—x m] In 7
slig -+ 2min (o)) e)
Here there is still a divergence from the behavior of the first tersn-as 0, which
can be traced to the singular behavior of the integral over the photon momentum
in Eq. (6.3) atp? = 0, when we take? at the poingj> = —m?, where we evaluated
Z, — 1. Such infrared divergences have common root as in the local QED.
To show explicit cancellation of poles at the lirdit> 4, we calculate whole

expression (6.5). Thus, terms proportiona-@?(1 — d)/2(2 — d) are as follows.

3223 2 d d

=q4o’x(1—-x)L-R( - —2)Lz"®
S =L R (5 -2)

+2RL2 221G + 260X (1 — X)]
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2 2 d d g-4
+49*x%(1 - x) L~D<§—2) (E_ )L
+20%- Lx(1—x) - D<g—2> L2—3
+4g%x(1 - x)D - (g - 2) L2-3[2L + 2g°x(1 — X)]

+D- L2221 + 10g2X(1 — X)] (6.8)

where we have denotetl = g?x(1 —x) +m?x, D =[—i(2—d)(1—
X)§+d-m] and R= —i(2—d)(1— x). Similar expressions hold for

other terms.
2. 3%x%} d d o
=120°%*(1—-x)?-L-R{=-2)(=-3)Lz"*
a@e ~ A=) <2 )(2 3) 2

+69°X(1— X)L - R(g — 2) L2734 129%(1 — X)R(% — 2)

+ L2321 + 20%x(1 — x)] + 3RL22[2L + 10g%)(1 — X)]

x 10§%%(1 — x)? - q2L - D - (g —2) (9 —3) Lo

+24.Qq2X2(1_x)2. L.D. (g _2> <g _3) L%74

+64%x(1 — x)D - (g - 2) L273. 2L + 292x(1 — X)]

+63%(1— X)D - (g - 2) L273. [2L + 10g2x(1 — x)]
+24Gx(1 — X)D - L 22 (6.9)

For completeness, we write two more lengthy terms.
3. 0%} d d

— ORA . 12%2(1 _v\2 .1 . 4 4 g4
W_%q gx(1—x)-L R(Z )(2 3>L

+484x(1 — x)R - (g - 2) L23. [L + (1 — X)]

+24-Gx(1— X)R- (g - 2) Lz73.[2L + 10g°X(1 — X)]

+4630°x3(L - x)°L - R (g - 2) <g - 3) 54
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and

CED)
3(a)°

+10g°Lx%*(1 — x)?- D
+929°Lx*(1—x)?- D

+360°Lx*(1—x)?- D

~— NI NI N

(g

+12x(1—x)-D (g L2-3[2L + 10g2x(1 — X)]

+1922x%(1 — x)2- D (g - 2) L3

+964X(1— X) - RL272 4 24x(1 — x)DL?72, (6.10)

= 480°x%(1 — x)?- 12- R (g - 2) L3

+472]2X2(1—X)2-L~R<g_ )(9_ )Lg“

+560%x3(1 — X)2L - R(g _ 2) ( _3> |44
P11 — x)?- L - D(——2)
2120531 — x)? - L - D<__2)
+ 22831 — x)? - L - R(g _2> <g _ ) Lo
+120x(1 - x)*- R (g - 2) L23[L + 5¢2x(1 — X)]
+768Px%(1— x)- R <% _ 2) L¢3

+3844x%(1 — x)?>- D (g — 2) L2—3

+3369x3(1— x)2- D - (g - 2) L2-3

+120k(1 — X)R- L272 (6.11)
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We now write an explicit form of contributions arising from first two terms in
(6.5):

9%,
_20|iq=7m - mhq:fm
_2.2 pl
- (::; 92/0 dx {[Zi (L — x) + 4ml[g*x(1 — x) + g2m?3x] In%

1
5,2 A2 A
+2m°x“(1 — x) In +2mx(1—x)(|q+m)lnm

m2x2

—4m*x(1+ x)(2x — 1)(i§ + m)In — (i 4+ m)dm®*x(1 — x?)

m2x32
+ M[(2i §(1 — X) + 4m)(g*x(1 — X) + g°m?x) + 2m°x?(1 + x)

+ 2m*x?(1 — x)(i§ + m) — 4m*x(1 + x)(2x — 1)(i§ + m)]} (6.12)

where

62 =0%(1—d)/22—d) and M= —Inm?x®+

s—aa (6.13)

Our main confirmation is that coefficients (6.8)—(6.12) at the singular vali# of
are exactly cancelled. These coefficients are defined as

K =Ki+4+ Ky + Kz + Ks+ Ksg (614)

where K1, Ky, K3, K4, and Ks are arisen from (6.12), (6.8), (6.9), (6.10), and
(6.11), with terms like i2x2) 22, respectively. Thus

Ky = (2i§(1 — x) + 4m)(g*x(1 — x) + g°m?x)
+2m°x2(1 4+ x) + 2m*x3(1 — x)(i§ + m)
—4m*x(1+ x)(2x — 1)(i§ + m),
Ky = [—4m3x(1 — x)(2x — 1) 4+ 2m®x(1 + x)(6x — 5)]
x [2m(m+id) — q* — 7],
Kz = [2m?x(1 — x)(x — 5(x — 1)) 4+ 8m?x(1 — x?)]
x [—2m® — 2mc? + 3m?(m +i§) = g*(m +i4)],
Ka = [Bmx(1 — x)? — 2mx(1 — x?)]
x [(MP + ¢)? — 4m*(m? + ¢°) + (M + 1 §)(4m° — 4m )],
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and
Ks = [—2x(1 — x’J(M? + g*)*(M + i) + (M + i§)4m*(—m* — )]
+(m +i§)2m(4m? — 4mc?) + (Mm? + g?)(4m* — 4m?)]
Now one can classify these terms as follows:
K=m+i§a* I +m?q?- 1o+ m*- I3 + g*mly + m3q? - Is + m° - Ig
(6.15)
Here
Iy = 2x(1—x)? —2x(1 - x)? =0,
l2 = 2x(1 — x) + 10(1— x)*x — 2x3(1 — x)?
—8x(1— x?) — 32x(1 — x)? + 8x(1 — x?)
+8x(1 — x)? — 16x(1 — x)? — 4x(1 — x)* = 0,
I3 = 2x3(1 — X) — 4x?(1 + x) 4 4x(1 — x?) + 8x?*(1 — x)
+8x(1 — x)? + 4x2(1 + x) — 20x(1 — x?) + 6x%(1 — X)
—30x(1 — x)? 4 24x(1 — x?) + 24x(1 — x)?
—8x(1—x?) — 2x(1 — x)?> =0,
Iy = 4x(1 — x) — 2x(1 — x?) + 8x(1 — x)® — 2x(1 — x?) — 8x(1 — x)*> = 0,
Is = 4x — 2x(1 — X) 4 4x2(1 — x) — 4x(1 — x)?
— 2x%(1+ x) + 10x(1 — x?) — 4x?*(1 — x)
+20x(1 — x)? — 16x(1 — x?) + 4x(1 — x3) —16x(1 — x)> =0
and
le = 2x3(1 4 X) + 4x3(1 — x) — 4x(1 — x)?
— 2x%(1 4+ x) + 10x(1 — x?) — 4x?(1 — x) + 20x(1 — x?)
—16x(1 — x?) — 24x(1 — x)® + 6x(1 — x?) + 8x(1 — x)* = 0.

Thus, we see that as in the case of the vacuum polarization, the pdles 4tand
the term—~ in T'(2 — d/2) cancel inZ, exactly. Multiplier (6.13) has arisen from
the product

r (2— g) (MmPx2)2=2 (2—1d/2 —7) [1— (2— g) In mzxz}
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= —Inm?x? —y=M
nmox< + 2-d/2 Y

at the limitd — 4. Other terms in (6.8)—(6.11) give the produt — %)(2 —

%) --- which is finite at this limit. After a straightforward but tedious calculation,

Eq. (6.5) becomes

B 3e?r292 1 .A 4 -
%6(9) = Ziocal(d) — W/o dX{[ZIQ(l —X) +4m][q"x(1 — X) + q"m?X]
m2x2 10

x | +(Mm+iq) [§m4(l — X)(—13+ 34x — 7x?)

n N
02x(1 — X) + m2x

+g°m? <g(1 — X)(95 — 288 + 109%?) — 2(1 — x)?(16x — 11))

+ 1—25q4(1 — x)?(—98+ 293<)]

q? 3 569 229 84 ,
+(m+ m) [4m 1 X)<60 + 12x+ 15x

829 143 772
amP(L— x) (— o= + 0 4 152 1
+ 2mag?( x)< 0" 5 Xt B~ >]} (6.16)

whereXocal(q) is given by Eq. (6.7).
It should be noted that in expressions (6.8)—(6.11) there appear terms of the

type:
d d d d
CAACw3(1 3, . el s el 5-5
108- oPx3(1 — x)3 - L D<2 2)(2 )(2 )Lz

that give divergence at the poixt= 0. These singularities are caused by the pole
of the valueL = g2x(1 — x) + m?x at the poingg? = —m?,

L(9?)|gz=—me = M?X? (6.17)

Since, contribution€}(q) due to noncommutativity of spacetime are free fromin-
frared divergences in the presence of the factor (()> — p°g?)in (6.3), and there-

fore we have omitted these fictitious divergences connected with a concrete form
of the Taylor series (6.5). Indeed, in some textbooks, for example, by Bogolubov
and Shirkov (1980) for removal of regularization (in our casdjmensional one),

it is used as an another form of the Taylor series

Z(q) — 2(0) - g—;hzo gl = (6.18)
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instead of (6.5). Of course, in this case, Eq. (6.17) reads
L(@%)lgz—0 = M?x, (6.19)

and therefore, all expressions (6.8)—(6.11) are finite at the poinD. However,
for this case we would obtain another expressijfq), (instead of (6.16)):

25(a) = 2(q) + ci(m+i§) + com
wherec; andc;, are some constants. In x-space last term acquires the form
[ca(m — 3) + cm]9(x),

disappearing at # 0, i.e., as should be expected from the general consideration,
in this term arbitrariness of the T-product (at the same timextpduct) takes
place only at infinity small neighborhood of the point 0.

Finally, we write explicit form of last two terms in (6.16) for the cases of
(6.18) and (6.19):

(M +i§)[m*(—4x?(1 — x?) + 4iy + 6i + 8i3 + 5ig)
+29°m?(—ip — 4ig — 5is) + q* - i4]
+m- 2(g° + mP)[MP(—iy — 2ip — iz — 2is) + q*(iz + 2i4)] (6.20)

where
1
i1 =X(1—X)5+7x—2x?), = éx(l — X)%(—28 — 35x — 4x?),
41 23 187 20

- _y2 _ 21 _ 7~ &¥ 972  2Y.3

i3 =x(1—x)+x(1 x)( ) 2x 12x 3x),
and

1— 2
= XA—x)° 15X) (8+ 574x — 646x2 + 340¢° — 48x%)

One can see that Eqg. (6.16) with (6.20) is finite at the pwiat 0.

7. ANOMALOUS MAGNETIC MOMENTS AND
CHARGE RADII IN NQED

Let us consider contributions due to noncommutativity of spacetime to the
magnetic moment and the charge radius of an electron or muon in lowest order
radiative corrections. Here we need to calculate the matrix element corresponding
to the one-loop graph in Fig. 5.

By construction the- product of this diagram

e iPX , i (PK-2) | @~ (F—P)Z , o i(P—KIZ-Y) , @ Tk(—X) , aiP'y
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5
p—k p-k
r 7\ /\\>_>_ Fig. 5. One-loop diagram for the photon-lepton vertex

functionT"* in NQED.
gives rise to a factor in the momentum space:
U= exp[%aw,k‘ P’ — 00usk* p? +00,, p° p/"] =1+U+U+Us (7.2)
where

3
U = 200,k — ok p? +60,,p"p° (7.2)

62 9 8
U2= 2 40'1“,0)()\'( p kXp —UaﬂO'tykakrpﬂpy

_UpUUOA p,(7 pe p/A + %Mvaaﬂ kM ka pU p/ﬂ

—30,,0,0 K P’ P + 20450,.K* PP p p° (7.3)

and so on. Here,,, = v, 1, — n¥u-

It is easy to see that the factor (7.1) in the limft=(p — p')> — O turns
to the form factor (6.2), that is corresponding or coordinating prescription of the
noncommutative theory. Making use of (2.6), one finds the trace of (7.1) with (7.3)
in the form:

2
Fr= T = 1= D 9(K- P — k) — 4((p K~ Kp?

N(d)
—4((p- p)* - p?P?) + 12(k - p)(k- p) — (p- P)K?) — 12(K - p)p°
— (k- p)(p-P))+8(k-p)p-p)— (K- pp3)] (7.4)

For some cases, we need the trace of terms in (7.1) which are proportiéal to

94
Fo=F + Z Fs3 (7.5)

where

2 2
F3 = _—GZTI’UZ

81 / /. / /.
= Talk- p)? —K2p2 + k- p)? —K2p?PP +[(p- p)* — p*p??
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—4{—(k- PIP?((p- P)’ — PP + (k- P)(P- P)(P- P)>— P*PA}
+2{(k- p)Y[(p- P’ — P*P? = K[P?((p- P’ — PPPA)}

— 18{(k - PK[2(p- P)* — P*P?] + (k- PIK[—p*(p- P)]

+2p°(k- p)(k- p)*—3(p- Pk P)Kk- p)*+ p*k- p)*
+6{—(k- p)K?p*P? + (k- p)k*(p- P)p? — (k- p)(k- P)*- (- P)
+ Pk P+ 277 {=p*(k- POK* + K2p*(k - p)(k - P)

+pP(k- p) - (k- p) = (p- PHkP)®) — A p*p?(k- K

— pP(p- Pk P — p?(kp)® + (k- P)(p- P)(kp)?)

—4{p*(k- p)k* — p?(p- P)(k- P+ (p- Pk p)°

— Pk p)k- P2+ 12(p%(p- p)(k- pk* — p?p?(k - )k

—(p- P)(k- p)(k- P+ p*k- p)%) — 12{2(p- p')p*(kp)®

+ (k- pY2(p- p)P%) — (P°P?+3(p- PY)KP)(K - P)

+K[(p- p)°—(p- P)P?P1}

ok p*((p- P')* — P°P?) + (k- P*(P°P? — (p- P)))) + 2p*(kp)?
—2p’(p- p)(k- p)(k- P}

+A{KZP?((p - P)? — p*P?) + (k- PY((p- P)* + PP P?) + 2P (kp)?
—4p%(p- Pk p)(k- P}

+9(k*2(p - ) — p?p?) — 4(p- P)Kk- p)(k- P)K* + p?k*(kp)®
+K2p*(k - p')? + (k- p)P(k- p)}

+ g{p/ p? k' — pfi(k - p)* = PRk p)* + (k- )Pk p)%)

9 2
+ E{pz((p- p)? — p*p?) -k — ;{pzkzm p) — Pk - p)(k - p)
— K2k p)*(p- P)+ (k- p)k- p?
—6{[(k- k- P)—K(p- PP P)* — p*p?)}
+6{[(k- p)p* — (p- P)(k- PI(P- P)* — p*p”]} (7.6)

Here, we have used expression of the type of (2.8) for the calculation of the trace
of multi-y,-matrices.
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In NQED, one-loop graph (Fig. 5) gives the matrix element:
—i —i(p -k +m
@r)* 2r)4(p — K2+ m2—ie

i —i(p—k+m
D] [(2:1)4 (p—Kk)?2+m2— is} [ey,(2n)']

vy = [ d“k[eyp(zm“][

—i 1
X | =—s———|[1+ F(0, P, 7.7
| i |+ R @7
where p’ and p are the final and initial lepton four momenta, respectively. This
integral has ultraviolet divergence, here we do use the dimensional regularization
procedure.

To combine denominators, we use the Feynman parameterization prescription

1 1 1
(PP —kZ+m2—ie(p—Kk2Z+m2—ickZ—ie

- 2foldxfoxdy[«p/—k)2+m2—ie)y+«p— 92+ P — i) (x — )
+ (K% —ie)(1—x)]3
- Z/Oldxfox dyl(k— 'y — plx — Y))? + X + a?y(x — y) —ie] .
Hereq = p — p’ is the momentum transferred to the photon.
Shifting the variable of integration
k—k+py+px—y) (7.8)

the integral (7.7) becomes
Fu(p’ ) 2i €2 /ldx /Xdy/d4k[k2+m2x2+q2y(x y) —i ]73
v P) = o7 —y)—le¢
° @2r)* Jo 0

xy? [ (P'(1—y) — k= p(x — y)) + m]y* (7.9)
[P —x+Yy)—k—py)+mly[L+ QK p, P, X, Y)]
where variable Q has arisen from Eq. (7.4) by using the shift (7.8):

2
Q = - {9l B ~ kPl — 4l(k- B’ ~ Kp?] + 120k - Bk p)
—K¥(p- P+ 2k p)2p* = 3(p- PI@x +y —2)+ 2K p)

x [3p% —2(p- PHE@X+y—2)+ (P*p? — (p- P))y — 2+ 2x)*} (7.10)
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Next step is a Wick rotation, replace the volume elentékt = Qqk4-*dk and
use the formulas (5.6)—(5.12) and (5.13). Putting this all together, Eq. (7.9) now
becomes

Iy (P, p) = (22;42"/ dx/ dy/ K- dk[k? + L] 3

. {[ Ky /] + Pl (P~ y) — K~ px — y))
=i (P = X+ y) — k— py) + mly,

2
- 1A+ B+C+DIIQu+ 0+ Qul) (7.10)

where we have used short notation

L = m’x* +q?y(x — y),
A=y’ [-I(PA-y) = P(X—y)+mly [-i(P(L—x+Yy)— py)+mly,,
B = —y"ky"ky,,
C =y’ [-i(P(L—y)— p(x —y)) + mly"(iK)y,
D = y (k)" [-i(P'(1—x+Yy) — py) + mly,, (7.12)
and
Q1= —-9[(k- p)* — kK?p’] — 4[(k- p')* — k?p?]
+12[k- p)k- p) —K(p- P
Q2=2k- p)2p?—3(p- PHl2x +y —2)+2(k - p)[3p? — 2(p- P)]
X (2x+y—2)
Qs = (p*p? — (p- Py — 2+ 2x)? (7.13)

To carry out integration over the varialite we need to calculate the following
type of expressions:

4
dd +2)

X 1 .
+42—d)p* pllaa = —ék“(pzy“ - p*p),

—y ky"ky, (k- p)? = - [PP((2 - d)* — 2(2— d))y"

4

2 —d)?
%kﬂ/”d—m = —k'y"

_yﬂRyMRVp k= —
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and
—yPky"ky, (k- p)k- p) = =K (P P Yy vsve
Y DY DY, + v DY) /dd +2)  (7.14)

and so on. Further, using the -algebra, one can transform last two terms in (7.14)
in the form:

A=y py py, + ¥ D'y by,
=Q2-d)Rpp +2p"p—-2(p- p)r“

After some calculations, we have

1
0 A-Qi=A(1- 3 ) G- 292
2) [A+ B]Qs = [A+ B](p*p? — (p- P)A)(y — 2+ 2x)*
is almost local theory witid?/2.
(2—d)?—2(2—d)
3 — K4l _ S PAYA
) BQ, = —k { ICER) Bp —2p)“y*
(2—d)? N2 4(2—d) R
+ g @p =20 d(d+2)[_9pup
_app 4 6pp 4 6p* m} (7.15)
and
(C+D)Q2

ik? A
= IF 22X +y =2y [-i(PA-y) = p(x = ¥)) +mly" Py,

+y Py =P = x +y) = p'Y) +mly,} - (2p% = 3(p- P))

2

+ IF 2(x+y =2 {y’[-i(PA-y) - p(x—y) +mly" Dy,

+ 7 Py i (DA —x+Yy) — PY) +mly,} - (3p% —2(p- p))
(7.16)

As in the local theory, we are interested here only in the matrix element
u(p)ry (p', p)u(p) of the vertex function between Dirac spinors that satisfy the
relations

uP)ip’+m=0, [ip+mlu(p)=0
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We are able therefore to simplify this expression by using the anticommutation
relations of the Dirac matrices to move all factgrdo the left and all factorp to

the right, replacing them when they arrive on the left or right ithWe take into
account the following standard relations between two Dirac spir{@'$andu( p):

a=—-1-y)A-x+y)r Dy pr
= —2(1- )1 — x+ Y)[-3m*y* — g’y" —2im(p* + p*)],
a2 = (X — Y)(L— X+ Yy’ pr" Py, = (X — Y)(L — x + y)[-4imp* — 2m*y*],
ag = —im(1—x+Yy)y’y"py, = —4im(l - x +y)p",
bi = y(L - y)y" Py 'y, = y(L - y)[-4imp* — 2m?y"],
by = —y(x — )y’ Py 'y, = —2mPy(x — y)y*
bs = imy”y" py, -y = 4imyp*
¢ =—im@d -y’ py"y, = —4im(l-y)p*
C2 =im(x — y)y” pr*y, = 4im(x — y)p*
c3 = My yty, = —2mPy*
We sum up these expressions and obtain
A = 2mPp (X% — 4x + 2) + 2(1— y)(1 — x + y)g?y*
+4im(y — x4+ xy)p* +4im(x% — xy — y)p’ (7.17)

This is the result of the local theory case. To simplify expression due to
noncommutativity of spacetime, we have

dy = —i(L— )y Py py, = —2(1— y)[-3m*y* — g®y*—2im(p* + p*)],
do =i(x = Y)y" Py, =i(x — y)[—4imp* — 2m?y*],

dz = my”y" py, = 4mp,

e = —iy Py Py, - (L—x+y) = —(L—x+y)[-4imp* —2m*y"],

& = iyy”py"p = 2iym?y”,

e3 = my”py*y, = 4mp*,

D1 = —i(1 -y’ Py*py, = —i(1 - y)[—4imp" — 2m?y"],

Do =i(x — Yy’ pr"py, =i2- (x — y)m’y*,

D3 = my’y"p'y, = 4mp",

Er = —i(L—x+ )y py"py, = =2 (L — x + y)[-3mPy"
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—q%y* = 2im(p* + pH),

=iyy’p'y" 'y, =iy[-4imp” — 2m*y"],
and
Es = my”p'y"y, = 4mp™

Lastterms frond; to E3 are arisen from the expression which is proportionajto
In the noncommutative quantum electrodynamics, the vertex function corre-
sponding to the diagram shown in Fig. 5 takes the form by means of short notation:

(Zn)4/ /dy/ K dk

x[A+B+C+D][k*+L]3 [1— E(Ql+ Q2+ Qs)]

ry(p,p)=

(7.18)

Here,L, A, B, C, D, Q1, Q2, andQ3 are given by expressions (7.12) and (7.13).
According to above calculations,

A = u(p)Au(p) = 2m?(x? — 4x + 2)y*
2(1—- y)(d — x+ y)g®y* — 2imx(1 — x)[p* + p*],

_ 2
a(pBup) =~ E ke
a(p)AQuu(p) = K? (1 - %) (3g2 — 7Tm?)A, (7.19)
Y
G(p)(A+ B)Qau(p) = [—%kz yi A] (y — 2+ 2x)2

4
P R
X(mq 4>|d»4

4
= (=k%y* 4+ A)(y — 2+ 2x)? (—m2q2 - qZ) ,

(Bp—2p)y"

2
G(p)B Qu(p) = —k“[z‘dw

d  d+2
_ m4@-d)
2d(d+2)

(p" + p“‘)] ld—a

— k| S -y B | 020)
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0(P)(C + D)Qsu(p) = 10 KA (P + p)(@x +y — 2)(2x — 1)

—gkz yrRx+y = 2)[AM?QPB—-2x— YY)+ g*5—y —2X)] (7.21)

Notice that in Egs. (7.19)—(7.21) we have exploited the symmetry of the vertex
function (or the diagram) under the reflectipn— p’ (or y — x — y) that gives
the factorp* + p™ exactly.

We next use the integral formula (5.16), the Gamma-function algebra (5.6)—
(5.12), and the limiting procedure like (5.14) and (5.30) for removal ofdhe
dimensional regularization as before.

According to the local theory there are other diagrams that need to be taken
into account. There is the zeroth-order tepthin I';. The term proportional to
Z, — 1in the contribution term (4.7) gives a termliy:

Py = (Zo—1y" (7.22)
Also, the effect of insertions of corrections to the external photon propagator is a
term:

/ 1 vy
g vac,pok P P) = WHQL (P = Py (7.23)

(p

The form of each of these terms (7.18), (7.22), and (7.23) is in agreement with the
general rule:

AP (P PIUCP) = TP | 7 Fule?) ~ 5P+ PGl u(p) (720

To ordere?, the form factors are
Fo(a%) = Z2 + M6(0%) + Fiocal(@?) + F1(a?) (7.25)
and
Go(0?) = Giocal(@?) + G15(0?) (7.26)

wherelIly(g?) is the vacuum polarization function (5.33),

_on2e? 1l X m2x2 + g2y(X —
fiocal(0?) = W/o dX/o dY[ln rT?ZX)g( V)

m?(x* — 4x +2) + g*(1 - y)(1 — x + )
" m?x2 + g2y(x — y) } (7.2
—em? 1 X x(1—x
Gueald) = oy [ ax [ oy o (7.28)
2

0 4
Fi(9%) = -5 {Flocal Ay — 2+ 2x)? (mzq2 + %)
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A2 1 X N N
_n_eZ/ dv/ dy[—lnmx +g7y(x —Y)
(27)* Jo 0 m2x2

9 21
((xlm4 + a2m2q2 + q4 (E(l —X)+ EY(X -y)
3 2.2 1
+Z(y—2+2x)(—4+y+2x) +mqy(x—y)F

2 —
< (1- gv=n) + X e, )l 29

2X2 m2
and
62 1 16722 1 X
Gle(qz) = _T {Glocal : (y_ 2+ 2X)2 (mzqz + Zq“) — (27_[)4 /0 ClX/0 dy
m2x2 + g?y(x —
x |:_ In rnqzx);( y) . (ﬁlm4 + ﬂszqZ) + quZy(X _ y)%
1 ¢g? y(x —y)
Here

o = —;(7x2 —6(2x — 1)),

az = —g(l —X)(1+ 3x) + 2x(4x -3)— 4—29y(x -y)
+3(y — 2+ 2X)(—4 + 4+ 2Xx),

B = —2IX(1 - x) +x?),

B2 = 9X(1—X) = 5(X - 1)(2X +y—2)-y(x—Y)

We see that Eqg. (7.28) is finite. It makes to calculate the anomalous magnetic
moment. We know that it is only* term that contributes to the magnetic moment,
so the effect of radiative and noncommutative corrections is to multiply the Dirac
valuee/2m of the magnetic moment by a factby(0). But the definition ok as

the true lepton charge requires that

Fo(0)+ Gy(0) =1 (7.31)

so the magnetic moment may be expressed as

wo = % (1- G4(0) (7.32)
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From Egs. (7.28) and (7.30), we find
—Gy(0) = —— = 0.001161 (7.33)
82

This is the famousy/2r correction first obtained by Schwinger (1948). From
explicit forms (7.29) and (7.30) it follows that

F19(0) = G14(0) =0 (7.34)

and therefore the charge-non-renormalization condition (7.31) and the magnetic
moment (7.32) do not change in the noncommutative quantum electro-dynamics,
atleast up to the order 6f. However, by using the next Taylor series (7.6), one can
verify that correction due to the noncommutativity of spacetime to the anomalous
magnetic moment (7.33) turns to zero at least for fourth order rhis assertion

is valid for any order i, since in the limitg? = (p — p')> — 0, the form factor

(7.1) goes to exp‘i[eawk“ p'], and therefore its trace is cosf (k - p)2 — k2p2.
In this limiting case, the shift (7.8) becomes

k—k+py+p(x—y)— k+ px

which gives risek - p — kp— m?x and k? - p? - —m?k? — 2(k - p) - m?x +
m*x?2, so that kp)? — k?p? — (k - p)? + m?k2. Therefore to ordeg?, Egs. (7.33)
and (7.31) do not change and remain as in the local theory-{£Q) = G14(0) =
0 for any order irg.

Of course, this assertion is valid only for the first radiative correctioreg in
to the magnetic moment. Even in just the next order, fourth ordertirere are so
many terms that the calculations become quite complicated. However, because of
the large muon—electron mass ratio, there is one fourth-order term in the magnetic
moment of the muon that is somewhat larger than any of the others. It arises from
the insertion of an electron loop in the virtual photon line of the second-order
diagram, as shown in Fig. 6.

The effect of this electron loop is to change the photon propagaict ih
Eq. (7.7) to (14 [1(g?))/ k2, whereTl$(g?) is given by Eq. (5.33), but with the

=L
e e S

Fig. 6. A two-loop diagram for the muon-magnetic moment in NQED.
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masam taken as the electron mass:
2 e2 t 92 22 2 2
I5(q°) = >3 A dx { [x(l—x) 16 (2m‘e‘+ 8mZg“x(1— x) — 10x“(1 —x) q4)]

9°%(1 — x) 0% 2 2 N v 2
Xln(1+Tg>+1_€3(2meqX(l X) — 9x*(1 — x)*q")

Inspection of Eq. (7.28) shows that in calculating the muon magnetic moment
the effective cutoff on the virtual photon momentgris m,,. The ratiom,, /me is
so large that fog? of ordermﬁ we may approximate

eZ 1
né(Q?) ~ F/o dx{x(l— x)In (m,,/me)

92
— — (2mg 4+ 8mZmZ x(1 — x) — 10x*(1 — x)?m,) In (M2 /m})

16
92
- 16 (2mZm?2x(1 — x) + 9x*(1 — x)zmi)} (7.35)

with the neglected terms having coefficients of order unity in place wﬁﬁy(ng).
Since this is a constant, the change-its4(0) produced by adding an electron
loop in the virtual photon line is simply given by multiplying our previous result
(7.33) for—Gy(0) by Eg. (7.35), so that now

e [ € et 1 62 4 1
Iy { + [— In (m?/mg) — — (Zm;‘ — —mgm? — —mﬁ)

~2m, | 872 " 1674 |6 16 3 3
62 (1 3
x In (m?/m2) — I <§m§mi + Emﬁ)]} (7.36)

The present experimental values of the anomalous magnetic moment of muon
(Careyet al, 1999, Particle Data Group, 2002)

1, = 1.00011659160: 6.101° (7.37)

are reliably confirmed by local quantum electrodynamics (Czarnecki and
Marciano, 2001; Hughes and Kinoshita, 1999; Kinoshita, 2001). It is natural to
suppose that the absolute value of the contributions calculated here should be of
an order or not greater than the experimental errors. This makes it possible to
establish the following restrictions on the parameét@&f the non-commutativity

of spacetime:

0<7-103m? (7.38)
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Now let us consider the other form factor (7.25). To satisfy the charge-non-
renormalization condition (7.31), it is necessary thatake the value

| 2n%e 4x—|—2
zz=1+ (2@4/ dx/ dy (7.39)

Inserting Eq. (7.39) back into Eq. (7.25) gives

& on2e? (1
F@) =14 — +“9(q2)+W/ dx/ dy

8 Q2
—m?[x? —4x+2] - q?(1—y)1 — x + y) —4x 42
x m2x2 + q2y(x —y) X2
m?x2 + g2y(x —
~In [ n?,é,xi( y)] } + Fu(@) (7.40)

where F,(g?) is given by Eq. (7.29). However, we see that the integral aver
andy now diverges logarithmically at = 0 andy = 0, because there are two
powers ofx and/ory in the denominators, and just two differentidls dyin the
numerator. This divergence can be traced to the vanishing of the denominator
[K? + m?x2 + g?y(x — y)] 2 in Eq. (7.18) atx = 0, y = 0, andk = 0. As in the

local theory, because this infinity comes from the region of small rather than
largek, it is termed an infrared divergence rather than an ultraviolet divergence.
This divergence has arisen only from the local part of the noncommutative theory.
Further, we shall continue our calculation by simply introducing a fictitious photon
massu to cut off the infrared divergence i (q?).

As mentioned above, we know from the Ward identity tfaf{0) = 1 —
Gy(0) = 1+ €?/872, so let us consider the first derivatif(q?) atq? = 0. Ac-
cording to Eq. (7.40) with., = u?(1 — x) + L = u?(1 — X) + m?x? + g?y(x —

y), mM?x? — m?x? + ;?(1 — x) in its denominator, this is

F3(0) = My (0) + Figcai(0) + F14(0) (7.41)

The vacuum polarization contribution is given by Eq. (5.33) as

I1)(0) = (7.42)

607°m?
Then the terndT; (0) 4 F,.,(0) gives

e2 2
0+ Fica©) = 55— [In (%) + g + ﬂ (7.43)
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with the term 25 the correction of vacuum polarization. While the tef(g?)
due to the noncommutativity of spacetime yields

F,(0) = —%szz <1+ é) (7.44)

On the other hand, Egs. (7.28) and (7.30) show @&4t?) has a finite derivative
atg>=0

G)(0%) = Gioeal®) + G1y(0) = 755 + G140 (7.45)
where
2 2
G4y (0) =~ m 2[ e2m/ fd X=Xy - 2+2x)}
e 62 , 31
47_[22m 36 (7.46)

These results are most conveniently expressed in terms of the charge form factor
f5(q?), defined by the vertex function

w(p', o )L*(p', P)(p. o) = u(p', o) [J/“ fa (%) + Iéi v r']

< (P = Pl fle(qZ)] up.o)  (7.47)
where

fo(9%) = Fo(a®) + Gu(q?) (7.48)
For|g?| <« m?, this form factor is approximately

&€ [(q° w? 2 3
2y ~ Ladl £, °
fo(q°) ~ 1+24 2( )[In(m2>+5+4}
1, 5, € e 31
29 m-q <1+ 8.2 472 36 (7.49)
This may be expressed in terms of a charge radjudefined by the limiting
behavior of the charge form factor fqf — O:
1
fo(@%) —> 1— éqzaez (7.50)

Thus, the charge radius of the electron in the noncommutative quantum electro-
dynamics takes the form

& W2\ 2 3 & 13
2_ & An(E) 242 pem (- 2.2 7.51
% 4n2m2[n<m2>+5+4}+ m w2 3s) SV
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We know that for electrons in atoms the role of the photon maisgplayed by an
effective infrared cutoff that is much less thanso the logarithm here is large and
negative, yielding a positive value fef. Last term in (7.51) is small contribution
with respect to first one.

8. THE CAUSALITY CONDITION AND UNITARITY
OF THE S,-MATRIX IN NONCOMMUTATIVE QUANTUM
FIELD THEORY (NQFD)

The principles of causality and unitarity of tti&matrix in QFT are the
basis of all approaches in the elementary particle theory which make claims to
self-consistency and physical acceptability. Therefore, the proof of the unitarity
and causality condition is crucial in constructing various models of QFT. These
problems were considered in detail by Bogolubov and Shirkov (1980) and Efimov
(1977), (see also Namsrai, 1986) in both the local and nonlocal cases, respectively.
In this section we study spacetime properties of some functions, and the causality
condition and unitarity of th&,-matrix in NQFT.

8.1. Space-Time Properties of Some Functions
in the Noncommutative Space-Time

To study spacetime properties of tBematrix in NQFT, it is necessary to
consider the local properties of test functions and generalized functions in non-
commutative spacetime.

Definition 8.1. Any smooth and generalized functiorigx) can be defined in
noncommutative spacetime by means ofth@oduct:

fo(x) = FY2(x) % FY2(x) = €2 " f0) gz In 700 (8.1)

and its the covariané-product reads

fa(x) = cos By (3 - 8§)% — Dty F2() F2(Y)lyx 8.2)

Differential and integral calculuses can be also formulated as the usual case (for
detail, see Section 9):

/ dx » f(x) = / A% [ Ay F2(X) £ 72(y) [y ] (8.3)

and

D100 = o [A 1200 ()] (3.
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where we have used the short notation

Axy = COS h9\/(8;§ - 00)? — oxoy (8.5)

In this case, the variational differential defines as

§ )
575 -0 = 57y L1000 f 001 = 2808° 0 = N F Wy
or
1)
m("‘)c F(X) = Axyd*(x — ) (8.6)
However

Axy8*(x —y) =8*(x —y)

and therefore

) = )= s(x—
57 P00 = 57 T ==y ®.7)

Moreover, there exist obvious equalities:
[ty testx =) = 109

/ d28%(x — 2)(#)e(z — y) = 8°(x — y) (8.8)

As an example, consider a function of the finite support in spacetime, say the
well-known discontinuous functiof(1? — x2), wherex2 = x2 + x2. This func-
tion is located inside the four spheres definedkBy= 12 or in the hyperboloid:
x? =12, x% = —x3 + x2. By the definition of thex-product, in noncommutative
spacetime form of this function is changed
l o eirlz irx2 irx2

0(1%2—=x%) = 6y(12 = x3) = — dr ——e 2 xe 2 (8.9)
27 J_ o T —1lE

Here we will use the covariartproduct (2.12). Then, result reads

X2

2 ir><2 i x2 y2
[6(X) =€ 2 (x)c€ 2 = Ayxy€ 28 € 28|y
(A=1/i1) (8.10)

After some direct calculations, one gets

N}

y2

= r1(X, ) e’§ e s (8.11)

>[5

x2
OxOy €™ 5 e~

N
N
)

X Yy Y

(9 8)) e s e s = hX,Y) e e (8.12)
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where
6 ,, 32,, , 64
r(X,y) = px ye — F(X +y9)+ 2 (8.13)
and
16 , 8 , ., 16
lz(X,Y)=EX'y) _E(X +y)+p (8.14)

By using these equalities, one can calculate higher order of differentials in
(8.10). For example,

2 42 2 y2
OxOyOxOy € & € 8 [y—y = A3(X, y) € & € & |y (8.15)

0 ay\2 2y pay\2 —2 ¥
(axap) OxOy €74 A|y:X=mxmy(axap) € 58 |y

x2 y2
=X, y) e 5 € 5 |y (8.16)

x2 Y2

(a;’ag)z (83((8}(')2 € 275 y—x = As(X, ) e 5% ly=x
Here coefficients.s(x, y) andis(X, y) are given by
A3(X, ¥)ly=x = A3(X,X) = 6-128-12. A™* —128-36-4- A~ x?
+128-12-8- A75(x?)? — 6- 51247 (x?)® 4 256A8(x?)*,

(8.17)
Aa(X, Y)ly=x = Aa(X, X) = 2304- A~ — 46087 ~°x?

+ 61447 5x* — 2304A x5 + 256A~8x8,
As(X, Y)ly=x = As(X, X) = 1152- A= — 2304- A™° . x?
+3840- A5(x?)? — 1536- A~7(x?)® + 256A8(x?)4  (8.18)
Substituting expressions (8.11), (8.12), (8.15), and (8.16) into (8.10), one gets

3 5 X
() = |14 202 A o+ 0% A 2.2 4 ... | e 5 (8.19)
4 32
where we have used the identities
X2 1 X2 Xz
€ =8-(—-1)e % 8.20
O . <2 . ) (8.20)

and

2 2
, 2 64| [x? X 1| e
= (2o —1) (1) - e 5 8.21
€ A2|:<2A ) <2A > 2| ¢ ®8.21)
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According to Eq. (8.19) expression (8.9) acquires the form

+£942

0 (17 — x%) = [1+392 v

30 -~]9(I2—x2) (8.22)

where

d 2 2 2
OIX2a(l x?) = =8 (17 — x°)

Thus, we see that Eq. (8.22) is a generalized function with finite support. Further,
making use of a formal link

1 1 1
—==(1+zV4+xO
A X2 2

between the parametarand the D’Alembertian operator, arisen from Eq. (8.20)
one can write expression (8.22) in an another compact form

0 (17 — x%) = K(00)o (17 — x?) (8.23)

where

K(GD)—l—i—jH m[ <1+ m)]
+ 29t Z[Xlz (1+;¢m)]+... (8.24)

32
Similarly, the Diracs-function in noncommutative spacetime is also changed

54(x) = 83(x) = Limo[(‘/l/An)“ eh *e-é} — K@) x)  (8.25)

Owing to above formulas in noncommutative spacetime the wave packet located
at the origin takes the form

W(x, A) = (\/1/Tn>4 e’g = Wy(x, A) = (\/W)4 ek e i

(8.26)

Here evolution of the wave packet may be understood by means of the proper time
formulism(s) instead of the usual time variabkg & t). The covariank-product
of this expression is

W (X, A) = gsW(X, A) (8.27)

where

2 4
0o (X) = 1+6 P1+10 (8.28)
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Here
X2 1
P=-E —1, P,=P2— P — 2 8.29
1 A 2 1 1 2 ( )
We see thapy (X) is a polynomial.
Consider yet one quantity of interest. This is metric or distance of two events
in noncommutative spacetime:

x2 = V/x2(x)cv/X2 = cos he\/(a; )% — OuDy - VX2 Y2y

6 6> 100 #*
:x2[1——-—+ } (8.30)

2 x4 24 x8
This metric tends to the usual on&,= —xZ + x? at long distances.

Finally, notice that the plan wave expft — i px) = ¢(X) possesses remark-
able properties. It does not alter its form in noncommuatative spacetime:
go(x) = EPX/2(x)c €PX/2 = A, P¥2. PV = dPX (8.31)
Commutation relations (1.1) allow us to link the dimensionful paramgter
with the Heisenberg uncertainty relations - Ap ~ h. Indeed, from Eq. (8.27)
it follows
62 04
1=14+6—5P+10——Po+--- 8.32
+ (Ax)2 1+ (Ax) 2 + ( )

at the limitx — 0. Here we have changetl — AXx, +/AX is the width of the
wave packet and functionB; and P, are given by Eq. (8.29), wherB,(0) =

_11 PZ(O) = g'
Thus, Eq. (8.32) gives
6
0 =,—-AX (8.33)
15
at least up t@°-th order ind, and therefore
1.25/6-Ap~h (8.34)

This is quantum mechanical physical meaning of the parantetar non-
commutative spacetime. In this case, the metfi¢8.30) is oscillated at small
distances, but it is possible that the metric becomes infinite at the origin due to the
uncertainty relation (8.34).

8.2. The Class of Test Functions and Generalized Functions in NQFD
We know that initial objects of the local QFT are singular functions:

the causal Green function¢(x) (8.35)
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or the propagator of the particle with mass
the positive-frequency par , (x) (8.36)

of the Pauli-Jordan function(x — y) = [¢(X), ¢(y)]—, wherep(x) is the field op-
erator. These functions have a higher singularity of the typ¥f 6(1), A~1/?

on the light cone. = —x3 + x? = 0, and are studied by means of countable nor-
malized spaces (spaces of test functions):

(1) Space D(G). Let G be the finite region, i.e., the bounded open set in the
n-dimensional real spade". Denote D(G), the set of infinitely smooth
functions (i.e., functions having continuous partial derivatives of all or-
ders) inR", tending to zero outside the region G. Define in D(G) the
countable system norm, by the formula ¢(x) € D(G)):

do(U) = Poo(u) = suplu(x)|, ..., Go(U) = Por = |nrraXSUIpID“U(X)I,
X a|=0  x
(8.37)
where
9br ...
pf = 9T _J”g”, ol =a1+ - 4o, X =X1X2 . X
Xyt ... Xy
(8.38)

(2) Space S [or ¥")] consists of all infinitely smooth functions in the
dimensional real spadR", which decrease rapidly any polynomials of
(X2 + X3 + - - - + x2)~Y/2 together with all partial derivatives §t|| —

00, i.e., S= SR") = C(oco, oo, R"). For these functions all the norms.

Ppo = - Max sup|x*D?u(x)| (8.39)
la|<p,lBl<0 xeRn

take finite values. Here the spaced; g, n) consists of complex-valued
functions ofn-real variablesx = x, ..., X,, having continuous partial
derivatives up to the order inclusively, and decreasing no more slowly
than|x|~* together with all derivatives at infinity. In other words, for the
functions uk) € C(o, p, n) all the products of the type

x*DPu(x)  lal<p, IBl<o (8.40)

are bounded. The norm in the space (A, n) is given by (8.39). We will
define the convergence in S by the countable system norms

Pr(U) = Poo(U) = max sup|x*DPu(x)l, ¢=0,1,2,...

le|<0,|Bl<0 xRN

(8.41)
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In particular, Hermit—Chebyshev functions, and in general, all functions of
the type

P(X1, X2, ..., Xn) exp(—xZ/af — - - - — x2/ak) (8.42)

may be used as functions of S-space, wherg B &n arbitrary polynomial.

Definition 8.2. A generalized function is called any linear continuous functional
over the countably normalized space S defined above, i.e., any element of space
S. Space Sconsists of all functional of the type

F(u) = fRn d"x f(x)DYu(x) (8.43)

where D* is given by formula (8.38), and (x) is a continuous function of the
polynomial growth. The function of space S are called test functions. The concept
of the generalized functions depends on the choice of the initial (linear topological)
space of the test functions. For example, instead of S we would take D(G) as a
base of test space. Schwartz (1957, 1959) defined the generalized functions as the
continuous functionals on space D of all finite and infinite differentiable functions

(D is the union of the space D (G), when the region G is changed).

Definition 8.3. Functions disappearing outside some finite region of space are
called finite functions. Closure of points set on which a continuous funation#
0 is called the support of this function.

From (8.27) and (8.28) it follows that with respect to the test functions of gen-
eralized functions, spacetime noncommutativity plays a role of multipliec). It
is said that functiom, (x) is multiplier in space S for test functions if froofx) €
S it follows thatg, (X) u(x) € S. The space of all multipliers arase from spacetime
noncommutativity we denot@y. It is clear that ifp(x) is infinitely differentiable
and a polynomially bounded function of x (together with all its derivatives), then
@(x) is the multiplier in S. The functional series (8.28) satisfies this condition.
Inthe local QFT concept of locality and microcausality condition is connected
with a definition of the local properties of the test and generalized functions, and
requires among them the existence of functions with bounded support. Usually, as
such functions one can consider the functions of D-space of infinite-differentiable
functions with bounded supports. By means of these functions the spacetime
properties of the functional are investigated, for example, the commutator of
Heisenberg’s field(x):

[o(X), ()] =7 (8.44)
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or the causality condition for th&-matrix in the Bogolubov form

) 8S
(= s = .
59(x) (8g(y) ) 0 (8.4%)

forx<y.

However, in spacetime noncommutativity there appear nonlocal distributions
(or generalized functions) of the type of (8.23) and (8.25). Study of such singular
functions is needed in introduction of a new class of test functions named entire
functions of the finite order of growtt. The space of these functions is denoted
Z, (Efimov, 1977).

For any f(z, ..., z,) € Z, there exist such positive numbets> 0 and
Aj>0(j=1,...,n)that

|f(z1,...,22)| <C exp|:Z Az, |“} (8.46)

=1

and for anyys, ..., Vn

/d“xl.../d“xnn (X2 +1Y1, ..., Xn +iyn)| < 00 (8.47)

The numbetr is chosen depending on the interaction Lagrangian under consider-
ation and the way of introducing nonlocality into the theory.

As seen below, for study of th§ -matrix in NQFD constructed by using
the covariant£)-product it is sufficient to use D-space of infinite differentiable
functions of the type of (8.42) in accordance with the particular example (8.19).

8.3. Structural Peculiarity of the S.-Matrix in NQFT

As seen above, thg,-matrix in NQFT is constructed as in the local theory
by means off,-product of field operators:

S =T, expli / d*x, L3, (x)} (8.48)
where the interaction Lagrangian is formed by usingsttpeoduct, for example
Ligep = 1 €9 () x ¥ Y (x) » Au(x) (8.49)
and
0= 2000 % (0 * 9(x) (8.50)
and so on.

Theorem 1. The Wick theorem is valid for the NQFT with the covariagft{
product.
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The proof is trivial. Indeed, as first step one gets
). (OIT[e(x)(*)cp(N1I0) = Axy(OIT[@(x)¢(y)]10)
=AyAX—Yy)=A(X—-y) (8.51)
(2). As second step, let us consider simple expression:
l123 = (OIT{: @(X1) : (¥)c : @(X2) : (*¥)c : @(X3) :}/0)
= (0IT{A12A13 1 9(X1) 2 9(X2) :: ¢(Xs) :
+ A13Az2 1 p(X1) 1 e(Xs) 1 (X2)
+A21A13 1 (X2) 1 (Xa) 1t (X3) :
+ Az23la1: o(X2) 1 o(Xa) (X)) :
+ Az1A13 @(X3) T @(X1) 1 g(Xs)
+ Ag2A21 1 9(X3) 1 o(X2) 1t (1) }0) (8.52)

where we have used the short notation:

Aqpcosh \/(8;‘1 . 8{32)2 = n
and
¢1 = ¢(X1) and etc.
ExposingT -product in (8.52) we have
l123 = 2(A12A13+ A13A32 + A21A13)[A12 D @3
+A13 2 +A2 91 ] (8.53)

whereédi; = A(X; — Xp) is the Green function of the(x) field. Carry out some
simple calculations in (8.53) and obtain

l123 = 2{A120A23A12 . @3 i +A13A32A10 1 @31 +A21A13A10 1 @3
+ A12A23A13 1 @2 ¢ +A13A32A 13 @2 L +A21A13A13 1 @2 !
+ A12A23A23 @1t +A13A32A23 1 1 L +A21A13A3 1 @1 1)

Further, use the identith120A12 = A1o..., arisen from (8.51) and obvi-
ous equality A1pAzz : @3 A1p = A12A12 1 93, A12A23 @20 A1z = A13A13:
@2: and etc., and go back to theproduct, we obtain the almost local expres-
sion
l103=6{A1o%x 1 @3 +Agax I @2 I +Azx I @1} (8.54)
with only difference in the verex points with theproduct (Fig. 7).
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2 l 2
/ x o~
1 ;(\+ 1 3 /l'* N

Fig. 7. The Simpler Feynman diagram arisen fr@mproduct in NQFT.

Now we consider yet ong&,-product for thep>-theory.

I3 = (OIT{: @1 *x 1% @1 I @2 %x P2 % Y2 i1 3 % 3 % ¢3}|0)
= 1_[ {Ay1y2Ay2y3Ay3y4Ay4y5AySyGAy6y7Ay7ygAygy9}

permutations

X<O|T{: <P(Y1)<P(YZ)§0(Y3) : |y1:yz:y3:><1 : ¢(YA)§0(Y5)(P(YG) : |y4:y5:)’6:X2
X T o(Y1)e(Y8)@(Yo) : ly;=ye=yo=x:}10) (8.55)

One of terms with the following chronological pairing

Lo (Y09 (Y2)0(y3) = o(Ya) (¥s)e(Ye) = o(Y)o(Ya)o(Ys) :
—/_-/

gives the matrix element (Fig. 8)
13 = @, - xA(X] — X)% © @, - %A(X — Xa)* & @y, © %A(Xz — X1)  (8.56)

after going back to the star-product.
In the momentum space matrix element corresponding to the diagram shown
in Fig. 8. gives the-product of the type:

e 1P, @ 1 (P—Ka—X3) , o= (P =P)Xs o @1 (P —KI(s—X2) |, g=Tk(e—X1) , &P (8.57)

as it will be expected (see Eq. (7.1)).

Thus, theS -matrix elements in the noncommutative quantum field theory
are constructed by a similar way as in the usual local theory with using the star
product.

Fig. 8. One of the diagrams in the noncommutaip/ztheory.
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8.4. The Proof of Unitarity and Causality of the S,-Matrix
8.4.1. The Causality Condition in the Functional Form

We now verify the condition (8.45) for th&,-matrix, which is constructed
by means of the-product of the interaction Lagrangiat, (x) in the case of the
NQFT. As usual, th& -matrix is presented as a functional series over the powers
of the coupling constarg(x), made into a function of spacetime:

o.¢] in

Slgl=1+) / d'... / XS (x0, - X)g(2) % % Q%) (8.58)
n=1""

or in the convenient form

stol = T.expfi [ @i 00+ 909 (8.59)

To check condition (8.45), we calculate the variational differentidfy] at the
pointy

i @(ms&g} =T. {zrn(y)(*)c exp[i f d*xL, (x)(*)c9<x)]}

taking into account herég(x) » /8g(y) = §*(x — y) in accordance with the for-
mula (8.7).

Further, the four-dimensional spa®é is divided into two part$, andG_
by the space-like surface = const= yy with respect to whichs, lies to “the
future” andG_ to “the past.” Thus, we have

i @(*)Ca[g] _T, {crn(y)(*)c exp[i [ + d“xcrn(x)(*)cg(x)}
X (4)e exp[i [ d“zcrn(z)(*)cg(z)“
=T*{£rn(y)(*)cexp[i / d“xﬁrn(x)(*)cg(x)“
G,y

x (%) T {exp[i / d4z£i*n(z)(*)cg(x)“ (8.60)
G_
On the other hand, we reach by analogy

Slg =T*{exp[i [ axcicomeano+i [ d“zarn(z)(*)cg(z)]}

=T feli [ atxenoean] T {enli [ atze,@ 0]
G, G_
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and also

Sl = { T, exp[i [ ol“x'crn(x)(*)cg(x)}}+

.
x {T* exp[i [ d“zﬁrn(z)(*)cg(z)“

From this, taking into account the unitarity property for

T, {exp[i [ @, (x)(*)cg(z)}}

and making use of (8.60), we get
)

)

)eS'd] :T*{ﬁrnm(*)cexp[i [ d“zcrn(z)(*)cg(z)“

+
X {T* exp[i [G d“zﬁi*n(z)(*)cg(z)“
+

Therefore, the product

1)
[5a S0l S71a
does not depend on the behavior of the functygx) in the regionG_, i.e., for

Xo < Yo. In accordance with the covariant principle of the relativistic NQFT with
using the covariantd.-product it takes place also in the case wiken y (space-
like separation). We recall that in this region € y) the commutator of the co-
variant g)c-product field operatap(x) (in particular for the scalar theory):

[o(x), ®ep(W)]- = A(x —Y)

disappears, which ensures the independence of events separated by space-like inter-
vals, i.e., the causality condition in noncommutative spacetime with the covariant
(%)c-product.

All above statements are based on the formal functional method. However,
there exists the perturbation theory approach (or the diagrammar approach) to
investigate unitarity and causality conditions in each order of the perturbation
series (for example, see 't Hooft and Veltman, 1973).

8.4.2. Diagrammar Approach to the Study of Causality and
Unitarity Conditions in NQFT

As seen above, structural aspects of Feynman diagrams in NQFT are very
similar to ones in the local QFT with only difference in those vertices, and
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therefore one can study causality and unitarity conditions by means of diagram-
mers. Sketches of study of such problem are divided into several steps:

8.4.2.1. The Ka#in—Lehmann Representation.
< p(s)
f(—s) = ———ds 8.61
9= [ £ (8.61)
is valid for any propagator, for instance, for vector mesons
1) A (K) = 8, F1(K?) + K, K, Fo(K2) (8.62)

In (8.61) the functiong(s’) must be real. The statement that any functiofx)
satisfies the Kadlh—Lehmann representation is equivalent to the statement

A(X) = 0(X) AT (X) + 0 (—X0) A™(X) (8.63)
whereA™ (A7) is a positive (negative) energy function
1 Oo / jkx %
AE(X) = E /a>0ds’ ,o(s)/d"’k 8¢9 (£ko)s (k% + S) (8.64)

From this equation it follows that™(Xg) = A~ (—Xg), S0 in any case\™(0) =
A~(0). This is enough to treat the case of one derivative such as occurring in the
case of fermion propagators. It is obvious thah ™ = dpA~ in X = 0 only if the
dispersion integral is supercovergent

/ds’ p(s)=0 (8.65)
Let us now assume that the superconvergence Eq. (8.65) holds. Then one gets
9:9u[0(X0) AT (X) + 6(—X0) A (X)] = 6(X0)3, 3, A™ (X) + 6(—X0)3,. 3, A (X)
(8.66)
using
3(X0)80A™ (X) — 8(X0)B0A™(x) = 0,
as well as
8 (%) AT (X) — 8’ (%) A~ (x) = 0.

Equation (8.66) is crucial for the proof of unitarity and causalitySamatrix
theory in accordance with the formula (8.51).

8.4.2.2. Unitary RegulatorsSince Green functions (8.51) in NQFT as well as
in the local QFT are divergent, it is needed to introduce so-called unitarity
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regulators, say

(1/8)?
27)4 (K2 + m2)(k2 + m2 + §-2)
Such type of the regulator method works for any theory in the sense that it allows
a proper definition of all diagrams and is moreover very suitable in the connection
with the proof of unitarity and causality. However, it fails in the case of Lagrangians
invariant under a gauge group, for which it will introduce a more sophisticated
method.

AK) > Ag(k) =

(8.67)

8.4.2.3. Method of Cutting Equatiorisis supposed that diagrams are sufficiently
regularized (say, the intermediate regularization §k8.67)), so that no diver-
gencies occur. The propagator of a particle is divided into positive and negative
energy (frequency) parts

Aij (X) = 0(x0) ALl (X) + (—x0) A} (X) (8.68)
AF(x) = (27)7° / d*k &0 (xko) p(K?) (8.69)

with X = X — X, andAjj (X) = Arij (X — Xj). Owing to the reality of the spectral
functionsp in (8.61), we have\;; = (Aff)*, alsoAj = (A), and therefore

A =006 = X))A +0(x) — X)) Af (8.70a)
As before
G(X)Zi.food‘[el—ﬂ.(I{l it %> 0 (8.70b)
2ni ) oo T —lE 0 if xp<O
and

O(X) +6(—x) =1. (8.70)

Let us consider a diagram with vertices. As in the local theory such a
diagram represents in coordinate space an expression containing many propagators
depending on arguments, .. ., X,. We will denote such an expression by

Fy(X1, ..., Xn). (8.71)
For example, the triangle diagram represents the function (Fig. 9):

Fy (X1, X2, X3) = (i9)° * Agp* Aoz * Agox (8.72)
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Every diagram, when multiplied by the appropriate plane waves (or source func-
tions) with thex-product and integrated over al| contributes to thes,-matrix.
The contribution to thes,-matrix, defined by

S =1+iT, (8.73)

is obtained by multiplying by a factori. Unitarity of the S.-matrix implies an
equation for the imaginary part of the so-defirlednatrix

T,—Tr=iT T, (8.74)

TheT,-matrix, or rather the diagrams, are also constrained by the requirement of
causality. Causality is formulated by using proposal involving the off-mass-shell
Green’s functionsAg(x) = A%(x). The causality requirment is most suitable in
connection with a diagrammatic analysis. In the language of diagrams Bogolubov’s
causality condition can be put as follows: if a spacetime pxiris in the future

with respect to some other space-time painthen the diagrams involving and

X2 can be rewritten in terms of functions that involve positive energy flow fxgm

to x; only.

The difficulty of this defintions is connected with the fact that space-time
points cannot be accurately pinpointed with relativistic wave packets correspond-
ing to particles on mass-shell. Therefore, this definition cannot be formulated as
an S.-matrix constraint. It can only be used for Green'’s functions. By this reason
in both commutative and nhoncommutative QFTs with the covasigatoduct the
proof of unitarity and causality conditions for tf&-matrix is the same, since
Green'’s functions in these theories coincide exactly.

There exist other definitions which refer to the properties of the operator
fields. In particular there is the proposal of Lehmantral. (1955, 1957) that the
fields commute outside the light cone. However, definition of the light cone is
changed in NQFT. The formulation of Bogolubov causality in terms of cutting
rules for diagrams was done by 't Hooft and Veltman (1973). We will give here
the main idea of their scheme of the construction.

8.4.2.4. The Largest Time Equatidnstead of a function (8.71) corresponding to
some diagram, let us define new functidfs
Fo(Xe, X2, - ooy Xiy ooy Xjy ooy Xn) (8.75)

where one or more of the variablas, ..., X, are underlined. This function is
derived from the original function (8.71) by the following.

1) A propagator\y; is unchanged if neithet, norx; is underlined.
2) A propagator\y; is replaced by\j if x but notx; is underlined.
3) Ay is replaced by\; if x; but notxis underlined (8.76)

4) Ay is replaced byA}; if xc andx; are underlined.
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5) Forany underlined, replace one factarby —i. Apart from that, the rules
for the vertices remain unchanged. This latter fact is very important for
NQFT.

Equations (8.68) and (8.70) lead trivially to an important equatioriatigest time
equation Assume the time;g is larger than any other time component. Then any
function F; in whichx; is not underlined equals minus the same function but with
X; now underlined

Fg(xl,xz,...,xi,...ﬁ,...,xn):—F;(xl,xz,...,ﬁ,...ﬁ,...,xn)
(8.77)

The minus sign is a consequence of point 5. It is useful to invent a diagrammatic
representation of the newly defined functions: Any functignis represented by
a diagram where any vertex corresponding to an underlined variable is provided
with ax circle (x).

Notice that if £y (X1, X2, X3) is given by Eq. (8.72) then

Fr(X1, X2, Xa) = (ig)% * Ad; x A% A% (8.78)
The corresponding diagram is as follows (Fig. 10):

X

X3 Fig. 10.

If the time component of; is largest we have, for instance (Fig. 11),

X Fig. 11.

For such a diagram it is impossible to see if a given line connecting a star
circled to an unstar circled vertex correspondsAoteor A~ function. But because
of Eq. (8.69) the result is the same anyway. Energy always flows from the uncircled
to the circled vertex, because of theunction in Eq. (8.69). Of course there is
no restriction on the sign of energy flow for lines connecting two circled or two
uncircled vertices.

8.4.2.5. Absorptive Parflo define the contribution of a diagram to tBematrix
the corresponding functioR; (X1, . . ., Xn) must be multiplied with the appropri-
ate plane waves (or source functions) using thgroduct for the ingoing and
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. x %, X k1
X X X
' P2// 6 5 4 i
Fig. 12. 2
outgoing lines and integrated over &ll For instance, the functioR) (xy, . . ., Xs)

corresponding to the diagram (Fig. 12) must be multiplied by

gP1xa gP2xXs g=ikixs g=ikaXa

with the star product in the appropriate places between the Green functions, and
subsequently integrated over, . . ., Xg. The result reads

1 )
= @0 / d*xy ... / d*xe €P% % A(Xy — X2) * A(Xo — Xs) * A(Xo — X3)
X * €K8 4 A(Xg — Xg) % €K% 4 A(Xg — Xs) * A(X5 — Xe)
x * @P2%6 4 A(Xg — X1) (8.79)

Next it will be taken as the covariant star produ€); (instead of the usual star-
product in (8.79). For the time ordering of the variaysgq. (8.77) takes the
general form

Fo(Xt, ..oy Xis oo Xjy ooy Xn) =0 (8.80)
inderlinings _
The summation is taken over all possible ways that the variables may be underlined.
There is also one term, the last, where all avriables are underlined. In this case,

Fo (X1, X2, ..., Xn) = Fj (X, X2, ..., Xn)* (8.81)

The proof of Eq. (8.80) is trivial.
In the momentum space Eg. (8.80) reduces to

Folke, - k) + Folk oo kn) = — > Folka, ... kn) (8.82)

cuttings

whereF, is the Fourier transform of the functidh without underliningsF, the
Fourier transform of the functioR, with all variables underlined. The functiof$
correspond to all nonzero diagrams containing both star circled and uncircled (with
star) vertices. They correspond to all possible cuttings of the original diagram with
the prescription that for a cut line the propagator functidiik) must be replaced

by A*(k) with the sign such that energy is forced to flow towards the shaded
region. Equation (8.82) is Cutkosky’s (1960) cutting rule (for detail, see 't Hooft
and Veltman, 1973).
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Notice that theT,-matrix is obtained by multiplying by-i, we see that
Eq. (8.82) is of precisely the same structure as the unitarity Eq. (8.74). How-
ever, Eg. (8.82) holds for a single diagram, while unitarity is a property true for
a transition amplitude, that is for the sum of diagrams contributing to a given
process.

Equation (8.82) holds for any theory described by a Lagrangian, whether it
is unitary or not. The Feynman rules fBy are, however, different from those for
T.. Therefore, if Eq. (8.82) is to truly imply unitarity a number of properties must
hold.

8.4.2.6. CausalitylLet us consider some diagram that represents a function
Fy (X1, ..., Xn). Letx; andx; be any two variables, and the time componemnt;of

be larger thamio. The following equation holds independently of the time ordering
of the other time components

> R X %) =0 0f X0 < Xjo (8.83)

underlinings
expect x;

Again terms cancel in parts. We do not need the diagrams whéseinderlined,
because;g is never the largest time.

Equation (8.83), when multiplied by the appropriate source (or plane wave)
functions and integrated over allexceptx; andx;, is the single diagram version
of Bogolubov's causality condition. His notation is

(et (1)eS } ()&

[SQ(X.) 89(X )

—— () S*)e—(x )cSk 0 if X< Xjo. (8.84)

69(x ) 59( i)

Here the first term describes cut diagrams (including the case of no cut at all—
the unit part ofS,) with x; andx; notcircled, and the second term denotes diagrams
with x; but notx; circled (star) S is the S.-matrix obtained from the conjugate
Feynmanrules (i.e., all wertices underlined), and will often be equ&t t&urther,
as beforeg(x) is the coupling constant, made into a function of spacetime.

Similarly we consider the case whep > Xjo. Then we have an equation
where nowx; is never to be underlined. Separating off the term with no variable
underlined, one can combine equation, with the result

Fy (X, Xn) = — 0(Xjo — Xi0) D F(Xa, o0 Xy - -0 Xn)
i

— (%o — xio)Z Fr(X1, .-\ X ---) %) (8.85)
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The prime indicates absence of the term without underlined variables. The index
i implies absence of diagrams withunderlined.

The summationsin Eq. (8.85) still contain many identical terms, namely those
where neithex; or x; is underlined. All these may be taken together to give

Pk, ) = — Y Fr(xa, ..., X)) — 0(Xjo — Xio) »_ Fj(xa,..., %)
i

underlined
i not

— 000 —Xj0) »_ Fi(x, ..., %) (8.86)

underlined
i not

The first term on the right-hand side of Eq. (8.86) is a set of cut diagramsxwith
andx; always in the unshaded region. They represent the pra@iger. S, with
the restriction thax; andx; are vertices of,. One can apply in this covariant star
product. Doing this as many times as necessary, the right-hand side of Eq. (8.86)
can be reduced entirely to the sum of two terms, one containing a fudgtien—
Xjo) multiplying a function whose Fourier transforms contairiinctions forcing
energy flow fromi to j, the other containing the opposite combination. This is
precisely of the form indicated in Section 8.4.2.3.

Now turn to Eq. (8.86). Introducing fof(x) the Fourier representation
Eq. (8.7M), one can see thétas another kind of propagator connecting the points
X andx;. Multiplying by the appropriate source (plane wave) functions and in-
tegrating over allx;, we obtain the following diagrammatic equation (Fig. 13):

(8.87)

Fig. 13. The blob stands for any diagram or collection of diagrams.

The points 1 and 2 indicate two arbitrary selected vertices. The “self-
inductance” is the correction due to thdunction, and is obviously noncovariant:

S ..
R0l - g 06
f

(8.88)

In the diagrams (8.87) on the right-hand side summation over all cuts with
the points 1 and 2 in the position shown is intended.
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The Feynman rules for the cut diagrams (for the simple scalar theory):

£ . . 1 1
MW Propagator in unshadowed regiom ——— —x——5—
@Yk +m2—is

g ¥  Propagator in shadowed regior  — (27:%16_2?}7112:&‘ (889)
v

£

1 24m2
*é* Cutline (27)36(160)5(16 +me)

Vertex in unshadowed regioig(27)*.
Vertex in shadowed region:ig(2r7)%.

For a spin-1/2 particle everything obtains above by multiplying with the factor
—ik+m.
Let us consider expression
b

i ——L Lk
*ﬁ S K24ml-ig 2)

with J; and J, nonzero ifky > 0. The unitarity Eq. (8.82) reads (Fig. 14),

Fig. 14.

The complex conjugation does apply to everything except the sodrdése

second term on the right-hand side is zero, because of the conklfjtiord. The
equation becomes

1
Jlier——m _ier)r ——
['(”) @rme_ie (T k2+m2+is}

L Ti%(en)® .
- J[ ) 0(ko)5(K? +m )} J

Note that the vertex in the shadowed region gives a faet¢2r)*. With

a—lia = P(é)—kina(a),
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it is seen that the equation holds true. Also Eq. (8.87) can be verified (Fig. 15).

N4
)fg_’ 3."*1?
= -

L
L

]

Fig. 15.

We now obtain (note the minus sign for vertex in shadowed region)

i(27)* L Gk /00 dpo {;Q(ko — Po)

Ktm2—ie (27)%27i ) o “po—ie

1
(k= P24+ P+ (ko + pol(k — P+ ] oo
The four-vectoipg has zero space components (see Eq. (8.88)) pg meegration

is trivial and gives the desired result.

8.4.2.7. Unitarity.If the cutting Eq. (8.82), diagrammatically represented as
(Fig. 16), corresponding td, — T,;t =iT (). T., is to imply unitarity, the fol-
lowing must hold:

1) The diagrams in the shadowed region must be those that oc&r in

2) the AT functions must be equal to what is obtained when summing over

intermediate states.

Notice that point 1 will be true if the Lagrangian generating &amatrix is its
own conjugate. Point 2 amounts to the following. The 2-point Green'’s function,
on which the definition of th&,-matrix source was based, contained a mafsix
Indeed, consider the diagrams connecting two sources:
The corresponding expression is

31 ()G (k. k)3 (K) (8.90)

The 2-point Green’s function will in general have a pole at some valv& of
the squared four-momentuky. If there is no pole, there will be no corresponding

£

/ N //“ E
Loe)

E

+

e TV Oy
1
|
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- J
J ) — 4 J (k)

S.-matrix element; such will be the case if a particle becomes unstable because of
the interactions. At the pole Green’s function will be of the form

Kij (k)
k? + M?
The matrix residuds;; can be a function of the componekts with the restriction
thatk? = —M?2.

One can treat the currents for emission of a particle, corresponding to in-
coming particles of th&,-matrix. Define a new set of curreml-é.a) one for every

non-zero eigenvalue d{, which are mutually orthogonal and eigenstates of the
matrix K (k)

at k? = —M?

Gij (k, K) = (27)% 8%k + K)

J®IP —0 if a%b
Kij () I® (k) = 2k 3 (K) (8.91)
and normalized such that

1for integer spin

I K i (K)IP(K) =
[37700] K ()97 % for half—integer spin

(8.92)
This is possible only if all eigenvalues &F are positive. In the case of negative
eigenvalues, normalization is done with minus the right-hand side of Eq. (8.92).
The sources thus defined are the properly normalized sources for emission of a
particle or an antiparticle (the latter follows from considerig—k)).

Thusin considerin®; (). S. one will encounter (particle-out &, particlein
of SH):

§ S
Bk DK 0P0Kn(R (699

in the sum over intermediate statds. is from the propagators attached to
the sources. Because @f = (L)conjugate WE have Kif(—=K) = Kim(K). Also if
J(K)K(=k) ~ J(k) then K+ (—k)J* ~ J*, showing that] and J* are the ap-
propriate eigen currents & andS. If unitarity is to be true, we require that this
sum (8.93) occurring 5! (x)cS. equals the matriX;y, occurring when cutting a
propagator.
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The proof of this is simple. Suppokeg; is diagonal with diagonal elemerits
The current-defining Egs. (8.91) and (8.92) imply that the currents are of the form

0
0

IO = 1/Vxa
0
0

There are no currents corresponding to zero eigenvalues Obviously,
> I I@ =t (8.94)
a

and this remains true if one provides the currents with phase factors, etc.
Asinthelocal QFT for spin-1/2 particles things are slightly more complicated,
because of* manipulations. For instance, one will have

K*(—k)y* = y*K(K) (8.95)

Also the normalization of the currents is different. One finds the correct expres-
sion when summing up particle-out/particle-in states, but a minus sign extra for
antiparticle-out/antiparticle-in states. This factor is found back in the prescription
—1 for every fermion loop.

Let

£ = 00 B+ MO0+ 5600 # (0~ )90 + 9 00) () 6(x)

be total Lagrangina of the scalar—spinor interacting system. Then there are four
2-point Green'’s functions:

- %
T AL PR
i 242 4!

. %
A PR Y
Ramd il

o
r
i
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Note the minus sign for the incoming antiparticle wave function. Scalar particle
self-energy is

—g%8%(k — k) / d*pcoshy (W)

L _Ciptm —i(p—k)+m
p2+m2—ie(p—K2Z+m—ie
where# is the dimensionful parameter in spacetime noncommutativity. Note the

minus sign for the closed fermion loop. Cut diagram (rememté2r)* for vertex
in shadowed region):

—(2n)*g?8%(k — K) / d*pcosh/(pk)2 — p2k?(—i p + m)6(po)

x 8(p? + mA)[—i (P — k) + m]0 (ko — po)s[(p — k)* + ]
Decay of scalar into two fermions:
P
>

\

N
9,

19(27)"y/apotiii(p)u (q) [cosho (PR — k] x sk — p — )
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The superscripz now indicates antiparticle spinor. The complex conjugate, but
with Kk’ instead ok, is

~ig(2r)"/Apotl (@u(p) [coshe(pk)Z — k22| 5K — p - )

The product of the two summed over intermediate states is

d3 1/2
(27[)8 24p0q0/ / (27[)6p2 poc;qo COSh9 (pk)2 — k2 pz]

1
N2 _ k212 Ak — 0 —aVsHK — b —a)——_
x[coshQ (pk) kp] x 8'—p -8’ = p-a)5
(i|b+m)_1(iq+m)
o« (— -
200

Note the minus sign for the g-spinor sum.

Sing po = /p? + M2, we have

&®p [ . 2, 2
Son d*pé(po)s(p” + m)
Po

and similarly forg. Theq integration can be performed

—(2n’ 9’8" (k — k) / d*po(po)3(p? + m?) coshp/(pk)2 — k2p?6 (ko — Po)
x [=1(P — k) + mI8[(p — k)? + mP][—i P+ m]

which indeed equals the result for the cut diagram. The minus sign for the closed
fermion loop appears here as a minus sign in front of the antiparticle spinor
summation.

9. SOME GEOMETRICAL AND PHYSICAL CONSEQUENCES OF
SPACE-TIME NONCOMMUTATIVITY

9.1. Specific Rule of Differentiation and Integration of Noncommutative
Functions

9.1.1. Differentiation

Because of noncommutativity of spacetime points a rule of differentiation of
noncommutative functions with respect to noncommuting variables is changed as
follows.
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1. Lety(x) be any smooth function, then its star product in noncommutative

spacetime reads

i =ep(5 0000 o3 ne00) @)

Making use of the covariant star product formula (2.12), one gets

W =o (1+ ST+ T+ ) 02
where
Ti(p) = { () [0%,0 - 97,0 — (Op)?]
+ ¢‘3(X) [Cp - 3¢ 3.0 — 0,0 (3,092,0) ]}, (9.3)
o) = o [(@ra)° - 00y ] VRBIVEOI],,

Equation (9.2) with (9.3) is basis of differential and integral calculuses in
noncommutative spacetime.

. By definition, differentation of noncommuting functions with respect to

noncommuting variables is given by a chain rule:

8 8 3 In In ¢(x)
X ez @(x) eZ ,
S P02 G e = 5 {e et )
2 3 2 In Fr(x)
p(x) = *p(x) = — e M FbI(x)c b (94

93X, X, X, axﬂ aX,

and so on. Here

d [ 1 1
Fu(x) = W{ez In ‘/’(X)(*)ceZ In w(X)}
L

0

62 62
S L A L RS ORI

In Eq. (9.5) the function(¢) is given by expression (9.3). Similar but
complicated formula holds foF,(¢):

Tale) = ¢ 200 (3% - 99)° — ok - 0y

X [exp(% In (p(X)) (*)c exp(% In w(Y)ﬂ |y
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and etc. One can also write formulas like (9.4) for any order of differential

forms:
d"x f(X)*xg(X) =d*...xdxd % f(X) xg(X) =
n—1terms
d_*...*d*d AAxy TX)IW)ly=x} =d*...xd-F, = ...
n—1terms n—2terms
where

Fo= ie; In 110 (), @2 " fl(x)} ’

f1(X) = d.[Axy f(X)9(Y)ly=x] = coshy <\/(8; . 83’)2 - Dxmy) d

<[ £ 0G(Y)ly=]

9.1.2. Integration

Integration rule for noncommuting functions over noncommuting variables
defines by similar way:

Iy = /d4X*g0(X) = /d“x exp(% In (p(X)> (*)c exp(% In (p(x)>

lo = //d4xl*d4X2*<P(X1, Xz)=//d4X1d4X2 F (X1, X2) (9.6)
where
F(x1, X2) = exp(% In f(xq, X2)> QF exp(% In £ (xa, Xz))

and

f (X0, X2) = Ay ®? (X0, X2)02 (X1, ) ly—so

Similar expressions of (9.6) hold for any order of integrals for noncommuting
functions over many noncommuting variabtgs. . ., X.

As seen above the star product meaning noncommutative properties of space-
time coordinates is cancelled by the covariant star product giving strong correlating
variables instead of noncommuting ones.

1. As the next step, we consider some concrete consequences arising from
the definitions (9.1) and (9.2). For example, owing to Egs. (9.1) and (9.2)
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the Euclidean distance in three-dimensional space acquires the form

0> 04
2 2 _ ./ / — 2
X=X = =X (1_W+(x2)8+m)
1
_y2
=X i ®-1)

where we have used the commutation relations:
[f(i,f(,-]:efm Tij = 0i0j — 0;0j

oi is the Pauli matrices.

We point out the geometrical rich character of (9.7) due to the non-
commutativity of space. Indeed, single sphere of raditis=X? in usual
space is decomposed many spheres with different radii in accordance with
Eq. (9.7). It means that from the point of view of dimensionality the
noncommutative space is equivalent to joint spaces with different dimen-
sionalities. We shall solve Eq. (9.7)

x2
& =17 (9.8)
14+ &
or
2B —122-063%2=0, x2 =1 (9.9)

This cubic equation has three real solutions and therefore we have follow-
ing set spheres arising from space noncommutativity initially:

2 2
(1) = (g - f—4> 2 (= (1+ f—4) 2
20 362 0 162
(rz)Zl: <2_7+Z|—4>|2, (r2)22: <||_2_§|_4)|2
20 362 6 162
(r%a1 = <2—7 + Z|_4) 12, (%) = <“—2 — §|—4> 12 (9.10)

and there also exist four pseudospheres:

8 162 0 162
. _ (S 107\ o _ (0 107\ 2
()21 = (27 4|4>| N (7! <i|2 2|4>|

2 2
(r2)31=—<237—i—[1?—4)|2 (r2)32=—(i%—%9—>|2 (9.11)
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2. It will be expected that the Coulomb potential is also changed in the
noncommutative space

o e 1 1
Pc(X) = ¢ (r) = o <m(*)cm (9.12)
After some simple calculations by using definitions (9.1) and (9.2), one
gets
0 el 162 756
= —-— [ R e 913
¢c(r) 4nr[ 2r4+8r8 (©.13)

On the other hand, Eq (9.13) may be understood as a sum of potentials
arising from different dimensionality of space:

ol(r) = p@rs) + o(r7) + e8(r11) (9.14)

The first termg®)(r3) is the usual Coulomb potential in the three-
dimensional space, while other two terg€)(r7) and p{9(r1;) are re-
sponsible from 7- and 11-dimensional spaces due to the noncommutative
space. It is obvious that our scheme, i.e., decomposition in Eq. (9.14),
is invariant with respect t®(3), O(7), andO(11) groups and therefore
distancess, r7, andry; can be formally understood as

3= X{+x3+x%, r7=\x2+ - +xZ rp=xI+ +x&
It can be seen easily that
divgrade!(r) = divgrad (¢{(r7) + ¢{(r11)) #0  (9.15)

as it will be expected in the usual sense, however if we define formal di-
vergence denoted trough Div which acts differently on the potential (9.14)
depending on those dimensionality of space, for example,

Divgradgf (r) = divgradg{d(rs) + divgradg{"(r7)
+divgrade{tV(ry;) = 0 (9.16)

Since

ex e ex:
& = grade®(r3) = {— L _e% _ e% } |

' 3 3
4grr s 4grs 4mrs

2
a’ = grade{)(r7) = {—— e, e, e
T
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_975,4e% 975 ,ex

11 11
a =grad<pé )(rll)z{ 3070 pI 30y 0 i

9.75 4%} 9.17)

327 it
From that it follows

, e
diva® = ~ s (3r3 —3x? —3xZ - 3x%) =0,

592
dival? = ~ 7S (73 —7x2 — 7% — ... = 7%5) =0,
T

9.75
32nris (

Above statements are valid due to the usual definition of grad, div, etc.,
in the c-number space. However, vector and tensor calculuses are also
changed in the noncommutative space. We now turn to this problem.

diva? = — 12 —11x¢ — 11%5 — ... — 11x§;) =0 (9.18)

9.2. Vector and Geometrical Meaning of thex-Product

Let us consider three-dimensional noncommutative space in which constant
vectora defines as

a-i+ay-j+a-K (9.19)

wherea (i = X, y, z) are constant c-numbers, while unit three vectog =
i, j, K) obey commutation relations:

[N, *n;] = 6y, (9.20)

Here7; andé are constant antisymmetric three-tensor and dimensionless
scale. In our case

Tij = 0i0j — 0i0j, 0i0j = 2i8ijko‘k (921)

gijk is full antisymmetric unit tensafi3 = +1. In virtue of (9.20), one gets

ixi—ixi=0, ixj—]*i =012
ixk —Kkxi=0g,, kxi—ixk =06
jrk—kxj =6, (9.22)

and so on. Here the star product means the star product of the scalar type for vector
n. Thus, the scalar star product of two constant veaasdb is given by

axb=(ax-i+ay-j+a -k)x(b-i+by-j+b,-k)
=bxa+2iflaxb] o (9.23)
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where R x b] is the usual vector product @ andb—two vectors. In Eq. (9.23)
we have used commutation relations (9.20) and (9.21). Formula (9.23) means that

[a,+b].=axb—bxa=2i0laxb] o (9.24)

This relation defines geometrical meaning of the scalar star product of two vectors.
This commutator equals to zero when two vectors are parallel. There exist also
cyclic relations:

axi—ixa=2i0(aoo — ayos)

axj—jxa=2i0(axo3 — a;01)

axk —kxa=2i0(ayo1 — ax02) (9.25)
Moreover, if coordinate vectorsy,zsatisfying commutation relations
[Xy — yX] = 612,
[xz—zX = 6.13,
[yz—2zy] = 0:23 (9.26)

and its the dimensionful parameteare dependent on the time variable then other

relations are valid
. . 1. . ) 1.
Xy —yXx= Eerlz, Xy —yx = E9112

1. 1.
Xy —yx= ZQTlZa Xy —yX = Ze‘l,'lz

Xy — yX = %ém (9.27)

Xz 'zx_lé
—IX= Z07p,
2 13

KZ— 72X = 1é
— — ‘E’ ,
20T

XZ — ZX = }é‘tlg
2

XZ—ZX = }é‘flg,
4

Ce .. 1.
XZ—2ZX = =6

720 (9.28)
. . 1. . . 1.
yz—zy= §9T23, yz—1zy = 59723
yz—zy= }éfzs, yz—1zy = }éfzs
4 4
P
YyZ—-27y = _9123 (929)

4
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In particular, from relation (9.26) it follows

ik
[r)r] =[xy z| =i(yz—zy) —j(xz—zX)
Xy z
+K(Xy — yX) = i0:23 — j6;13 + K612
= 2i6(icl+jo2+kod) = 2i0 - & (9.30)

wheres is the Pauli vector with componenis, o, andos.
The vector star product for two vectasandb is given by

i jok
[a(x),b] = |ax ay a,| =i(ay b, —a, x by)
ax ay a |,
—j(ax x b, — a; x by) + k(ax » by —ay * by) (9.31)

Finally, in accordance with formulas (9.27)—(9.29) we would like to write yet
one relation for the radius vector depending on time variable

ijk
[F)uf] =[xV 2| =i(yz—2y) —j(xz - 2Y)
Xyz
+k(Xy — yX) = %é& N (9.32)

9.3. Motion of a Material Point in the Noncommutative Space

Let us consider a variable vectar= a(x, vy, z, t) depending on the space
coordinates = (X, y, z) and usual time. In this case, usual vector analysis can
be easily generalized by using the covariasfgroduct. In the noncommutative
model the vector velocity and acceleration of the material point have the standard
from

V(t) = dr/dt, o(t) = dv/dt
and therefore the Newtonian law has the similar from
mdv/dt=F
or

me=mV=mi =F (9.33)
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Multiply both parts of Eq. (9.33) by the radius vectowith the vectorial star
product:

[r()umi] = [r(x),F] (9.34)
Taking into account Eq. (9.32) with the constant paramgterconst and making
use of the identity
d . . . .
gel Wmi] = [F()umi] 4 [r (x).mr]
= %é -mé + [r(*),mi] = [r(x),mf] (9.35)

(sincef = 0) one gets the standard form

d .
gl (omr] = [r (), F] (9.36)

If the forceF belongs along or backward with respect to the direction of the radius
vector

F=yr (9.37)
then

[r(x).f] = ZiGV%t +C (9.38)

where we have used Eq. (9.30). In the usual commutative space Eq. (9.38)with
Ois called the integral of conservation of areas. On the contrary, owing to Eq. (9.38)
in the noncommutative model, conservation of areas does not valid. This is one of
consequences due to the space noncommutativity in classical physics.

Let us consider yet one consequence for the motion of the material point in
the noncommutative space. Multiply the basic Eg. (9.33) by the vétdoe= dr
with using the scalar star product and obtain

mV  Vdt = Fxdr
SinceVdt = d « V and therefore
m(V «d xV) =Fxdr
By definition
2V xdxV)=dx (V*V)

and

dx(V*V)=d [cosh@ <\/(V}ViR)2 — ArAR) (F - Rj)|R=ri|
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It can be seen easily that

V2
dx(VxV)= d7 (9.39)
since
0 . d
8_xirj = aé., =0
On the other hand

Fur = costty/ (VI VF)? — A Ar- FI(r)dRjlner = F -1 + Gy

where

Gy = [coshe\/(v;vﬁ)2 — Ar AR — 1} dR; - FI(r)|Rr=r

Collecting these results, one gets

m\/2

d (T) =1 —0%F(r))F-dr (9.40)

Here a functionf (r) has arisen from the functia@ in the#?-approximation and
depends on a concrete form of the fofeg). For example, if the forc&(r) is
given Eq. (9.37) therf (r) = 0. The expressioémv2 is called the living force of
the material point and the scalar prod&ctr presents an elementary work of the
force F through displacemertr .

Finally, one can rewrite the Newtonian law in the form

dmV = Fdt

and integrate its both parts over the limits from the momgid the moment.
The result reads

t
mV—mV0=/ Fdt

to

The integral of the forc& over time, i.e., the integral

t
|:/ Fdt
to

is called momentum of the fordeduring the time interval — t,. In the noncom-
mutative space this is the same as in the usual case.
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9.4. Appearance of Inertia as a Residual Effect due to the
Noncommutative Space

The origin of inertia presents one of the fundamental problems of physi-
cal theory. Newton and Mach considered this problem in different ways. Newton
assumed that inertial forces such as centrifugal ones must appear because of ac-
celeration with respect to “absolute space,” while Mach suggested that inertial
forces are more probably generated by the general mass of heavenly bodies. The
difference in their assertions is not metaphysical but physical, since if Mach were
right then a large mass would give rise to small alterations of the inertial forces
near it, while if Newton were right, then such effects would not appear (for details
and further discussion, see Bertatial, 1984, Weinberg, 1972.

Here our gaol is to show that the origin of the inertial force may be under-
stood as a residual (or averaging) effect due to the noncommutative space at large
distances. Without loss of generality, we suppose that space honcommutativity is
based on the following relations

[%i, Xj] = Gnuij (9.41)

whereGy is the Newtonian constant ang is given by Eq. (9.21).

Second assumption is that motion of any bodies in such space is considered
as a motion in a continuous medium like liquid and those velocity depends on
coordinate variables andt:

v(t) = v(x, t)

and therefore velocity of bodies becomes noncommutative variables and we shall
understand the Newtonian Eq. (9.33) as an equation with the star product

d
—Vv*(xi, t)=F 9.42
m V(5,1 (0.42)
orin components:

d
mau;(xi,t) = Fx
d ,
mauy(xi,t) =F

m %v;(xi AN =F (9.43)

As before, in accordance with Eq. (9.1) one defines

vi(xi, t) = VJG(xi 1) = exp(% Inv;(xi, t)) (*)c exp(% Inv;(xi, t)) (9.44)

(j = X%, Y, 2). Here in our particular case, the paraméterequal to the Newtonian
constantGy.
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Thus, space honcommutativity gives rise nonlinear self-turbulence version of
the Newtonian equation with some internal force arisen from Egs. (9.2) and (9.3)
for spatial components of the velocity:

dy -
Moo = Fey (9.45)
dt
where
im__G_ﬁE -1 20 020 (A2
Ft = 3 mdt {vit(X,t) [akjv.akjv. (Av)?]

+ vi‘Z(X, t)[AVi . ajVi jVi — ajVi(akVi a,fjvi)]} (9.46)

Herei = X, y, z. We see that the force (9.46) depends nonlinearly on velocity field
and is negligible small due to the fact@#, with respect to measurable effects in
classical physics for any values of the velocity except some extremal conditions: at
the singular point ¥= 0 and changing its direction quickly. For example, terms like
—V2(x, t)iy and—2v;3(x, t)V; in Eq. (9.46) give similas-function effects(v) at

v — 0. This reflects exactly innermost specific properties of the inertial force. It
seems that the origin of inertia is linked with pure spacetime properties, namely its
noncommutative nature. This fact is very interesting and more attractive. Even if
time is noncommutative, then Egs. (9.41), (9.42), and (9.45) are valid with a little
difference:

[)’Zva )’z,u.] = GN‘KU[L

d
ma *V(X,t) =F (9.47)
dv, o
md—\:' — Foy Eex (9.48)
where
Ty = WVu — VuWv
and
= int Gﬁ d -1 2 2 2
= 3 M4 (Vi (X, t)[og,viog, vi — (Ovi)?]

+ V(X D[V - 04V, Vi — 8,Vi(9,vid5,vi)] } (9.49)

Hidden forces (9.46) and (9.49) are responsible for inertia but do not detectable
in process of motion of bodies except for specific moments: changing in direction
or absolute value of those velocity quickly (in particular, from which a centrifugal
force is arisen). However, an external force switches off or on at an instant time and
at the same time the hidden force does rech its largest value at such short moment,
after that it turns to zero quickly.
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9.5. Differential Operatiors in the Noncommutative Space

Our next purpose is to find operation of differential operators like grad, div,
rot, A = V2 in the noncommutative space, which played an important role in the
noncommutative field theory.

9.5.1. Gradient or the Hamiltonian Operator (Nabla Operator)
In the noncommutative space, gradient of a scalar function is defined by using
thex-product

3 3 3
rago =gradx ¢ =V =i— j — k— 9.50
grady = gradx ¢ * Iax*¢+lay*<p+ 07 ¢ (9.50)

wherep = ¢(X, Y, z,t) is a scalar field.
Further, itis easily seen that by means of this operator one can express gradient
of one vector by an another vector

9 9 d
(v(*)sV)*azvX*a—X*a+vy*@*a+vz*a—z*a (9.51)

The divergence of the vector a may be formally considered as the scalar star product
of the symbolic vectoF on the vectoa

a=iay +jay +ka,

Indeed, carrying out its remultiplication by the formula for the scalar (star) product
of two vectors

bxa=Dbyxax+byxay+b,xa,

and assuming

a ] d
bX=—, by=—, bz=—
X ay 0z
one gets
Vxa 8a+8a+aa divxa (9.52)
* = — % — % — % = * .
ax 9y Y ezt

Now we would like to change the star product in above formulas by its
covariant version«). and after thagrad, div, etc., are considered as the standard
operations.

1. grag g = grad{exp(% In (p(X)) (*)c exp(% In (p(X))}
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0 1 1
2. {(v-V)a}x = vg * I {exp(éln ax> (*)cexp(éln ax>}

d 1 1
+Vy * @ {exp(EIn ax> (*)Cexp<§In ax>}
9 1
+ V% 2 {exp( In ax> (*)Cexp<zln ax>}
= Vy {exp(%ln f;‘) (*)cexp<%ln f;‘)}
+vy {exp(%ln fxy> (*)cexp< In fy)}
1 z 1 z
+ Vv, {exp(iln fx) (*)Cexp(éln fx>} (9.53)

and similar formulas hold foy- andz-components. Here

a 1 1

fX = X exp(EIn ax) (*)c exp(EIn ax>
ad 1 1

fy = @ exp(EIn ax> (*)c exp(EIn ax>

0 1 1
fZ2 = 5 exp(élnax) (*)cexp<ilnax)

While Eq. (9.52) takes the form

\Y 0 1I 1I
*a= X {exp(é nax> (*)Cexp<— nax)}
9 1
+ 8_y {exp(éln ax> (*)e exp( In ay)}

+ % {exp<%ln ax) (*)c exp( In az)} (9.54)

Consider some examples. lg(ix, Y, z) be the length of radius vector in the three-
dimensional space:

p=VxX2+y24+22=r

Then, by definition

a=Vxr =V {exp(%lnr) (*)e exp(%lnr)} (9.55)
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Direct calculations give

1 1
rg = exp(ilnr) (*)Cexp<§Inr>

30  23776*
—r(1+i e S0 9.56
( Tgri T gears ) (9.50)

and therefore

r 992 2377-76%
[1 } (9.57)
This is an explicit form of the gradient of the Euclidean distanitethe noncom-
mutative space.
The second example is the gradient of the modified Coulomb law (9.12) or
(9.13) in the noncommutative model:

el e 562 75.964
*—— = o ——
Arr  A4mrs 2r4 8 r8
This is an electric static field of the point-like chargén the honcommutative

space.

Ey= -V

(9.58)

9.5.2. Whirl (or Rotor) of a Vector and the Laplacian Operator in the
Noncommutative Space

Rotor of a vector in the noncommutative model is defined by using the vec-
torial star product:

roya= Vx)a=i 0 a, 9 a
= * = — % — — %
Y ay - oz Y

(0 a ad ad
+J(E*ax—a—x*az)"r‘k(a—x*ay—a—y*aX) (959)
We know that from the pure geometrical point of view this differential operator in
the usual commutative space possesses remarkable property:

d 0
rotgradh = ¢jjx ——¢ =0 9.60
g do ijk 3Xj 3Xk¢ ( )
for any scalar field. It is easy to see that this fundamental property of space does
not valid in the noncommutative space.
Let us consider two concrete examples:

902 237776%
8r4 864 r8

r

a) =Var = - [1 (9.61)
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and

e ey, ! e [14 562 N 75.9 0%
= —_—— * - = — _— —_—
A r  4mr3 2r4 8. r8

We would like to calculate rotor of these vectors by the formula

(9.62)

rotxa® = i(3y al) — 3, +al) + (3, » al) — 3, «a?)
+ k(3 *al) — 9, »al)) (9.63)
where by definition of the covariant star product

oy val) o, {exp( 5 nad) eexp(3 )l (069

and so on. First of all, we calculate the following expressions:
, 1 ‘ 1 .
AD = exp<§ In ag)) (*)e exp(i In aé”)

= 2.71/23(y% £ x?)N(i) + 1'_6%()(2 F Y22

4 4 8

x[_%_i_:—‘_z(%_ ﬂ (9.65)

) . i1 i
AE(I) — Xk—|/2—3(y2 + ZZ)N(I) + 1_6;(22 + yZ))\—I/Z—Z

. 5
+é)\—i/2—l (_§+}i>+La_i/z_z

i 3 1 2
_A‘—I/Z—l _ _I _X)\‘—I/Z—z
*ax 272') 78

4 i 2
x|:—%—i—i——2(l—1—):| (9.66)
A = ya 2732 + XPN() + 1'—6 %(x2 + 2222

i i2
+4'—yr‘/2*1 (—§ + }i) + Syaniz2

x{—%—i—:—l—Z(i—l— ﬂ (9.67)

From these equations it followsAl) = AD(z— x,x — 2z) and
A =A(z—y,y—>2). Here r=x*+y2+7 N(i)=zi%i — DG +
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1)— %iz, i =1, and = 3for (9.61), and (9.62), respectively. Further, taking into
account formulas (9.64), (9.65)—(9.67), one can calculate rotor of vectors (9.61)
and (9.62) by using Eq. (9.63)

92
rot,a® = rot« a® = rot« grad«r = -

x{i[l—76zy(z2—y2)r—9+%(%—§>r—5—3( (X*+y?) — (x2+zz))r‘7}

[ gt - Ao 3 (-2 (G4 A - S0 |
1
>

z
X
-2 BGen-Ten)])

l 2 2y -9
k[lsyx(y X+

(9.68)
and
rot,a® = rot« a® = rot+ grad« (_%r})

- %9_22 { [2;432“2 yr 4+ g (% - ;)N
Bt o)
hrmmre
ié( P +2) = S (2 + ) rg]

+ [%gyx(yz =X+ g (3 B )_z/) "
ié( (Z+x7) = (z2 + yz)) r—9“ (9.69)

From Egs. (9.68) and (9.69) itisimmediately seen that rotgrad does notidentitically
zero in the noncommutative space.

For completeness, we want to calculatexdivadxg in the noncommutative
model. For two concrete chosen vectors (9.61) and (9.62) it takes the form:

2
v x 2@ — di el __eo[4asl
div x a —le*QI’&d*( 4nr> e r
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27 3[xXP+y? x4+22 y*4+7
_Z(Zzyz_i_zzxz_i_xzyz)r_n_ |: +y n + +Y+ :|r—7

16 72 y2 X2
817
_?E4f+y%+ﬁy11 (9.70)
2 2 (22

div*a(l)zdiv*grad*rzFJr%{3—29r_5

T 22, 202 2o L1[X+y X+2Z y+22]
+2(xz+zy + XSy)r el 2= t V2 e
1/1 1 1 35
L L O

respectively. We know that in the usual commutative spticgrad (— 2= %) =0

while as seen from Eq. (9.70) this identity does not valid for the noncommutative
theory.

By definition, we call diw grad the Laplacian operator in the noncommutative
space and denote it througty,

A, = div x grad (9.72)
The Laplacian equation
Ap =0
in the noncommutative space satisfies up to ordérof
Ao = 0(6?)

or

(V(#)cV)p = Aup = O(6?)
where

Ap =VH)Vxp = A, *x@.

This is definition of the Laplacian operator in the noncommutative space.

9.5.3. The Differential Operator divrota and Possible Evidence of the Dirac
Monopole in the noncommutative Space

We recall that definition of divergence gives rise identity

divrota=0
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in the commutative space. It means that rotor of the vector field for any vector a is
free of sources. Therefore basic parts of the Maxwell equation are

div E=47p and diH =0,

wherep is the density of electric charges.

By analogy with the electric charge we suppose the existence of a magnetic
chargeg and its magnetic field generated by this charge. The noncommutative
space allows us to appearance of such magnetic field given by the vector potential

Ay = —%grad(%) (9.73)
Indeed,
Hg =rotx Ay = —grot* grad*} #0 (9.74)
4 r

However, if we would like to takdiv of the vector (9.69) in the usual sense (without
the x-product) then we observe that

1
i @ _ divH.. — di _9-
d|vrot9ag divHy = divrot x grad( o r)

d
:a_x(ay* a.y)—i-—(az*ax — 3y xad)
a (ax*ay *a) (9.75)
_ 992{ 24311 xyAZ )‘13—2—1<X—E)xr‘9
47 2 4 \z vy

189 [y o o Z. o ol -1
+ 16x[z(x +vy9) y(x +2z9)|r

24311 2 13 2L X\ o
ol =B BT (3=

189 2, 2 2, o], -11
+Ey[;(y +Z)_E(y +X)]r

ML e o 2 (_ ~ X) -

16 4\y x
+ 11—8692 [X(z2 + x?) — %(Z2 + yz)} f_ll} =0 (9.76)

This identity means that in the noncommutative space equation
div » rotyal = div« Hg = 0% - f(x,y, 2) (9.77)
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is almost zero and proportional to th&-order of approximation, where

g (OH® JHY  JH®@
f(X,y,20) = —— 9.78
%,y 2) 4n< X oy + 0z ( )
and
i i)\ 2 i\ 2 i\ 2
HO = (T5)"+ (T9)" + (T%)
~TOT0 - TOT0 - 1,07,9 (9.79)

(i =x,y,2).Leti =z=3then

11 1 __
-|—X(3) — —?Q;/ZXA_lS/A + §Q3 1/2M)((3))»_11/4,

248 3/1 y 3/x y
MO = _ %32y vy L 2 (2L L 22 (2 LY
X 8(3)(y y)+8<y+x2) +2<y X>X

21 [22 + 3x2

Y 2 2 21 2,0 Y2, .2
T y +ﬁ(z +Y)]k—§[ (z +x)—;(z +y)]x,

X
y
11 1/2 _ 1 —1/2 —

T)S?») — _7Q3/ y)\, 15/4+ 5(g3 / M>(,3))\, 11/4'

243 3/x 1 3/x 'y
MO = @Ry’ —x)+= S+ =) 2+ (== )y-2
v 8(yx x)+8 y2+x +2 y X y

240 x5 o 1, 2 2L X o Yo 2
| ea- @)= T @ ea- L@ )y

and

TG = _E-Q;/sz—ls/zl + }le/sz’))fll/“
2 2 '

MO S (XY, 2 (xz_yz\,
z 2\y x 8\y X
X
- [§(22 +x?) — %(z2 + yz)] z
Moreover, the following notation is clear:
Te_ 210 1o_ 279 TO_2270 (9.80)
XX 8X X 1 Xy ay X 1 Xz 82 X
and so on. Here

A=xP 4242 r=al2
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243 3 z
a=a; = —zy(z yA)r 11+§<§—9>r7

1|: ( 2+y2) (X2+ZZ)]r—9

16
243 3/z X
o =a= G2 ()
21
RS B0 [

243 3 (x
8, =3 = XYy’ =X ‘“+§<§—%>r‘7

L@ ea-tE e
From (9.79) it is easily seen that

HO =HOy - x,x > 2,z y)
and

HO =HOX >y, y—> 7,z Xx)

It is worth noting that instead of Eq. (9.77) in the noncommutative space the
electric field satisfies equation

div x grad,a® = div « E = 47p + O(6?) (9.81)

wherep is the density of the electric charge. Comparing two Egs. (9.77) and (9.81)
one asserts that probability that observation of a magnetic charge if it exists in
nature is very small.

9.6. Linear Integral, Flow of a Vector Through Surface, and the Gauss
Theorem in the Noncommutative Space

In this section we give some definitions of vector integral calculuses in the
noncommutative space, which played an important role in the tensor analysis for
the noncommutative theory.

9.6.1. The Linear Integral

The linear integral of the vecta along a curve. in the honcommutative
space is given by the star product:

f dr xa (9.82)
L
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where
drxa=dxxax+dyxay,+dzxa, (9.83)

For example, calculate the integral
/(dy*x —dxxy)

L

taking along the contour of the circle:
X2 + y2 — RZ

Since, by definition:

1 1

dy*x = dy{exp(i In x) (*)ceXp<§ In x)} =dy- X

and

1 1

dxxy=dx {exp(E In y) (*)Cexp<§ In y)} =dx-vy,
and therefore one can parameterize this integral by using one vagiable
X = R cosp y = R sing
or
xdy—ydx= Rédg
The result reads
27
/(dy*x —dxxy) = / R?dy = 27 R?.
L 0
We recall that the linear integral of a vector along a closed curve is called

circular of the vector over this curve.

9.6.2. Flow of the Vector Trough a Surface

Flow of the vector a trough the surfa&can be written in the form of the
star (scalar) product:

/ dS(x)sa = / dSxa, = / d Sa(x)sh (9.84)
S S S
wheren is a unit normal vector to the surfa&and

an = a(x)cn = ay » cosf, x) + ay » cosf, y) + a, » cosf, 2) (9.85)
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Consequence Llet a be the constant vector andSfis the closed surface
then

?{ds*ao =0 (9.86)
S
Since, one can formally write

a = exp(% In ao) (*)c exp(% In ao) =a (9.87)

?gao-d3=ao-7§ds
S

S

and therefore

As a usual commutative theory, vector over the closed surface is equal to

Zero, i.e.,
?g dS=0
S

On the other words,

%cosh, X)dS=0, ?gcos@, y)dS=0, ygcosh, 2)dS=0
S S S

Indeed, therefore we obtain Eq. (9.86).
Consequence 2eta = r be the radius vector of a point. Then

?gdS*r =3V + 0(6? (9.88)
S

whereV is the volume limited by the closed surface. Since, one can formally write
* = exp(E In r> (*)e exp(g In r) =r <1+ 0] (9—2>> (9.89)
2 2 r4
which gives Eq. (9.88).

9.6.3. The Gauss Theorem

In the noncommutative space, the Gauss theorem is generalized in the fol-
lowing star product form:

ygds*an = ?gdS{ax * cosfy, X) + ay x cosf, y) + a, x cosfy, z)]
S S

= / dV xdivxa (9.90)
v
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Finally, it should be noted that because of the noncommutative nature of
space, an absolute ideal concept of pure noncompressible liquid does not exist. In
this case, the volume of the liquid going out through any surface does not always
equal to the volume going in, and therefore full flow is almost zero up to the
62-order in the parameter of noncommutativity. Thus instead of the equation of
indissolubility of noncompressible liquid

diva=0
we obtain an approximate equation
div x a = diva+ O(6?) = 0O(¥?)

for indissoluble liquid moving in the noncommutative space.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor Y. Nishizuka for helping us to establish
collaboration between our Universities. | thank Professors T. Nogami, T. Sasaki,
H. Shiba, and C. S. Lim for their warm hospitality at the Kobe University and
suggestions and useful conversations. The author expresses many thanks to people
at Kobe University for valuable discussions and comments and also “Kanbara
Foundation” for its financial support.

REFERENCES

Ardalan, E., Arfaei, H., and Shiekh-Jabbari, M. M. (1998)eprint hep-th/9803067.

Ardalan, E., Arfaei, H., and Shiekh-Jabbari, M. M. (199®urnal of High Energy Physic3902 016.
Preprinthep-th/9810072.

Athanasiu, G. G., Floratos, E. G., and Nicolis, S. (1996). Holomorphic quantization on the torus and
finite quantum mechanicdournal of Physics A: Mathematical and Gene28l 6737.Preprint
hep-th/9509098.

Banerjee, R. (2002Modern Physics Letters &7, 631.

Banks, T., Fischler, W., Shenker, S. H., and Susskind, L. (1997). M theory as a matrix model: A
conjecturePhysical Review D: Particles and Fiel&8, 5112.Preprinthep-th/9610043.

Bertotti, B., Farinella, P., Milani, A., Nobili, A. M., and Sacerdote, F. (1984). Linking reference systems
from spaceAstron. Astrophyl33 231-238.

Bigatti, D. and Susskind, L. (2000). Magnetic fields, branes and noncommutative gedPhgsigal
Review D62, 066004 Preprint hep-th/9908056.

Bogolubov, N. N. and Shirkov, D. V. (1980ntroduction to the Theory of Quantized Fie]d@sd ed.
Wiley-Interscience, New-York.

Bolonek, K. and Kosinski, P. (2002physics Letters B47, 51.

Caetano, A. S. and Felder, G. (1999). A Path integral approach to the Kontsevich quantization formula
math Q A/9902090.

Carey, R. Met al. (1999).Physical Review Lettei®2, 1632.

Chaichian, M., Demicheyv, A., and Rmdjder, P. (2000aNuclear Physics 567, 360.Preprint hep-
th/9812180.



Noncommutative Field Theory 2703

Chaichian, M., Demichey, A., and Rmrgjder, P. (2000bjournal of Mathematical Physicél, 185.
Preprinthep-th/9904132.

Chaichian, M., Demichev, A., and Rmgjder, P., Sheikh-Jabbari, M. M., and Tureanu, A. (2001a).
Nuclear Physics 611, 383-402.

Chaichian, M., Sheikh-Jabbari, M. M., and Tureanu, A. (2001b). Hydrogen atom spectrum and the
Lamb shift in noncommutative QEPhysical Review Lettei®6, 2716.

Chaichian, M., Sheikh-Jabbari, M. M., and Tureanu, A. (2000c). Space-time noncommutativity, dis-
creteness of time and unitarifyreprint hep-th/0007156.

Connes, A. (1994Noncommutative Geometrixcademic Press, New York.

Connes, A., Douglas, M. R., and Schwarz, A. (1998). Noncommutative geometry and Matrix Theory:
Compactification on toriJournal of High Energy Physic3802 003.Preprinthep-th/9711162.

Cutkosky, R. E. (1960)ournal of Mathematical Physids 429.

Czarnecki, A. and Marciano, W. J. (200Physical Review D: Particles and Fielégl, 013014.

de Wit, B., Hoppe, J., and Nicolai, H. (1988). On the quantum mechanics of supermemblaciear
Physics B305, 545.

Doplicher, S., Fredenhagen J., and Roberts, J. E. (1€5pmunications of Mathematical Physics
172 187.

Douglas, M. R. and Nekrasov, N. A. (200Review of Modern Physi&s, 977.

Dunne, G. V., Jackiw, R., and Trugenberger, C. A. (1990). “Topological” (Chern—-Simons) quantum
mechanicsPhysical Review D: Particles and Fieldd, 661.

Dunne, G. V. and Jackiw, R. (1993), “Peierls” substitution and Chern—Simons quantum mechanics,
Nuclear Physics G3(Proc. Suppl.), 114Preprint hep-th/9204057.

Duval, C. and Horvathy, P. A. (2000). The “Peierls” substitution and the exotic Galilei gRhysics
Letters B479, 284.Preprinthep-th/0002233.

Efimov, G. V. (1977)Nonlocal Interactions of Quantized Fielddauka, Moscow.

Filk, T. (1996).Physics Letters B76, 53.

Floratos, E. G. and Nicolis, S. (2000). Quantum mechanics on the hypeRnebeinthep-th/0006006.

Gamboa, J., Loewe, M., and Rojas, J. C. (2000). Noncommutative quantum mecRagycst hep-
th/0010220.

Gomis, J. and Mehen, T. (2000Wuclear Physics 91, 265.Preprinthep-th/0005129.

Gracia-Bondi, J. M., Varilly, J. C., and Figueroa, V. (200B)ements of Noncommutative Geomegtry
Birkhauser, Boston.

Grosse, H., Klineik, C., and Prefiajder, P. (1996a)nternational Journal of Theoretical Physi&s,
231.

Grosse, H., Klingik, C., and Prefajder, P. (1996bCommunications of Mathematical Physitgs,
507.

Grosse, H., Klineik, C., and Prefajder, P. (1997)Communication of Mathematical Physi&85
155.

Huang, W. H. (2001). Casimir effect on the radius stabilization of the noncommutative Rbrysics
Letters B497, 317-322.

Hughes, V. W., and Kinoshita, T. (199%eview of Modern Physic&l, 5133.

Ishibashi, N., Kawai, H., Kitazawa, Y., and Tsuchiya, A. (1997). A laljeeduced model as super-
string.Nuclear Physics B98, 467.Preprinthepth/9612115.

Jonke, L. and Meljanac, S. (200Breprint hep-th/0210042.

Kimura, Y. (2001). Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix
model.Progress of Theoretical Physid96, 445-469.

Kinoshita, T. (2001)Preprinthep-th/0101197.

Kontsevich, M. (1997). Deformation quantization of Poisson manifddsprint g-alg/9709040.

Lehmann, H., Symanzik, K., and Zimmermann, W. (19%&j). Formulierung quantizierter Feldtheo-
rien. Nuovo Cimentd, 205.



2704 Namsrai

Lehmann, H., Symanzik, K., and Zimmermann, W. (1957). The formulation of quantized field theories,
II. Nuovo Ciment®, 319.

Lukierski, J., Stichel, P. C., and Zakrzewski, W. J. (1997). Galileaninvariaht{pdimensional models
with a Chern—Simons-like term aridl = 2 noncommutative geometrinnalen de Physic260,
224.Preprinthepth/9612017.

Madore, J. (1999)An Introduction to Noncommutative Differential Geometry and Its Physical Appli-
cations Cambridge University Press, Cambridge, UK.

Morariu, B. and Polychronakos, A. P. (2001). Quantum mechanics on the noncommutative torus.
Nuclear Physics B10, [P M], 531-544.

Nair, V. P. (2000). Quantum mechanics on a noncommutative brane in Matrix tii&eprint hep-
th/0008027.

Nair, V. P. and Polychronakos, A. P. (2000). Quantum mechanics on the noncommutative plane and
spherePreprinthep-th/0011172.

Namsrai, Kh. (1986)Nonlocal Quantum Field Theory and Stochastic Quantum MechabidReidel,
Dordrecht, Holland.

Particle Data Group (2002). Review of particle physkysical Review 36(1), 1-958.

Polchinski, J. (1998)String Theory, Vols. 1 and Zambridge University Press, Cambridge, UK.

Schomerus, V. (1999Journal of High Energy Physic8906 030.Preprinthep-th/9903205.

Schwartz, L. (1957, 1959Theorie des Distributions, Vols. | and Hermann, Paris.

Schwinger, J. (1948Physical Review3, 416.

Seiberg, N., Susskind, L., and Toumbas, N. (2000)rnal of High Energy Physi@)06 044.Preprint
hep-th/0005015.

Seiberg, N. and Witten, E. (1999purnal of High-Energy Physi@909 032.Preprinthep-th/9908142.

Snyder, H. (1947)Physical Review 1, 38.

Susskind, L. (2001). The quantum Hall fluid and nhoncommutative Chern—Simons tReepyint
hep-th/0101029.

Szabo, R. J. (in presgphysics Reportreprint hep-th/0109162.

‘t Hooft, G. and Veltman, M. (1972). Regularization and renormalization of Gauge Fidlddear
Physics B44, 189-213.

't Hooft, G. and Veltman, M. (1973). Diagrammar, CERRteprint, CERN 73-9, Geneva.

Weinberg, J. S. (1995)he Quantum Theory of Fields, Vol. 1: Foundatip@ambridge University
Press, Cambridge, UK.

Weinberg, J. S. (1972ravitation and Cosmology; Principles and Applications of the General Theory
of Relativity Wiley, New York.

Witten, E. (1996). Bound states of strings gobranesNuclear Physics BI60, 335. Preprint, hep-
th/9510135.



